NATIONAL NUTRITION MONITORING BUREAU

NATIONAL INSTITUTE OF NUTRITION Indian Council of Medical Research Hyderabad - 500 007, India

2000

NATIONAL NUTRITION MONITORING BUREAU

SPECIAL REPORT

Page Nos

NUTRITIONAL STATUS OF ADOLESCENTS ... 1-25
NUTRITIONAL STATUS OF ELDERLY ... 26-66
FOOD \& NUTRIENT INTAKES OF INDIVIDUALS ... 67-95

NATIONAL NUTRITION MONITORING BUREAU

REPORT ON
 DIET AND NUTRITIONAL STATUS OF ADOLESCENTS

K. VIJAYARAGHAVAN
K.VENKAIAH
K. DAMAYANTHI
M. UMA NAYAK

NATIONAL INSTITUTE OF NUTRITION Indian Council of Medical Research

Jamai-Osmania (P.O.)
Hyderabad - 500 007, INDIA

Page Nos.

ACKNOWLEDGEMENTS

SUMMARY 1 2 2

1. INTRODUCTION 2-5
2. MATERIALS AND METHODS 2
2.1 Sampling Design 4
2.2 Investigations 4
2.3 Analysis
3. RESULTS 5-23
3.1 Current Dietary and Nutritional Status 5
3.2 Food and Nutrient Intake 11
3.3 Time Trends 17
4. COMMENTS 24
REFERENCES 25

ACKNOWLEDGEMENTS

We wish to convey our thanks to Dr.A.Laxmaiah, Dr.R.Hari Kumar and Dr.M.Vishnuvardhana Rao, Senior Research Officers; Dr.N.Arlappa, Mr.Ch.Gal Reddy, Mr.K.Mallikharjuna Rao, Dr.N.Balakrishna and Mr.B. Surya Prakasham, Research Officers; Mr.Sharad Kumar and Mr. M.Ravindranath, Technical Research Officers for their help during analysis.

We also thank Ms.G. Madhavi and other staff for their technical help and Mr. G.Hanumantha Rao and Ms. G. Prashanthi for their secretarial help.

Adolescence is a period of rapid growth and maturation in human development, after infancy. Since, there is very little information about dietary and nutritional status of adolescents in India, an assessment of the current diet and nutritional status of adolescents was carried out utilizing the data collected by the National Nutrition Monitoring Bureau (NNMB). In addition, the time trends in diet and nutritional status were determined. The anthropometric data obtained on 12,124 adolescents and 24 hour recall dietary information on 2,579 individuals in 1996-97 were analyzed and, were compared with the anthropometric data obtained on 24,683 adolescents and dietary information on 3,313 individuals obtained from the same villages in 1975-79.

The results revealed that the proportion of adolescent girls getting married before the age of 18 years was 23%. Among them the proportion that could be considered as 'at risk' due to short stature ($<145 \mathrm{cms}$) was 24.1% and that with under weight ($<38 \mathrm{~kg}$) was 18.6%. The food and nutrient intakes, in general, were below the RDA. More than two-thirds of adolescents were consuming <70\% RDA for vitamin A and riboflavin. The percent of underweight (<Median -2SD of NCHS weight for age) in males was 53% as compared to females (39.5\%). About 39\% were stunted.

The adolescents measured during 1996-97 were significantly taller and heavier than their counterparts studied in 1975-79 indicating secular changes in growth during a period of twenty years. There was an increase to the extent of 2.5 to 3.5 cms in mean heights and 1 to 1.5 kg in mean weights. In general, there was improvement in the nutrient intakes. The extent of severe deficit with respect to energy ($<50 \%$ of RDA) decreased from 21% to 9% in boys and 14% to 5% in girls during 1996-97 as compared to 1975-79. The socio-economic variables like type of house, occupation and land holding and per capita monthly income were significantly ($p<0.05$) associated with weight and height for age.

1. INTRODUCTION

Adolescence is a period of rapid growth and maturation in human development after infancy. The nutritional status of adolescent girls, the 'future mothers' contributes significantly to the nutritional status of the community. It is only recently that efforts, though small, are made to include adolescent girls as beneficiaries in some of the health and nutrition intervention programs.

There is very little information about dietary and nutritional status of adolescents in India. Hence, in this report, an assessment of the current diet and nutritional status of adolescents has been made utilizing the large data that was collected by the National Nutrition Monitoring Bureau (NNMB). In addition, the time trends in diet and nutritional status were determined by using the data that was collected by the NNMB in 1975-79 from the same villages.

The NNMB, through its annual surveys, since 1972, established a large database on different representative segments of population belonging to different States. It also conducted repeat surveys in 1988 and 1996 in the same villages that were surveyed in 1975-79. In the present report, results of analysis carried out on the data on adolescents collected during 1996-97 have been used to indicate the current status. These were compared with those obtained in 1975-79 to find out whether there were any time trends in the dietary pattern and nutritional status.

2. METHODS AND MATERIALS

2.1 SAMPLING DESIGN

2.1.1 Selection of villages

In the first repeat survey carried out during 1988-90, in each State about 100-120 villages were surveyed. Of these, 75% were those covered during 1975-79, while the remaining 25% were a new set of villages. A similar sampling procedure was adopted for the second repeat survey, covering 120 villages in each State. Of these, 90 villages were from those covered both in 1975-79 and 1988-90, while the remaining 30 villages were new. In each State, the villages were selected from 8 districts representing different geographic locations of the State. Thus, ninety villages were covered at all the three points of time and the 30 villages covered for the first time. The sampling design is presented in the following flow chart.

2.1.2 Selection of households

From each of the selected villages, 20 households (HHs) were selected by adopting 'cluster sampling method'. For this purpose, the main village and its hamlets (if any) were divided into 5 natural clusters, consisting of groups of houses/streets/ mohallas/areas, which included at least one cluster inhabited by SC/ST community. From each of the selected clusters, 4 consecutive households were surveyed, by selecting the first household randomly.

If the number of households in a given cluster was too large, the cluster was further divided into sub-areas, and one sub area was selected randomly for covering 4 HHs. Thus, in each State, a total of 2400 HHs were targeted for survey.

> Individual Diet survey : 600 HHs InN No. of Villages : 120 areis jad aberanoj 18101

HH auo : Kanuns łə!p əxełu! ןenp!^!pul

 NפISヨG SNITdW甘S

2.2 INVESTIGATIONS

The following investigations were carried out in the selected HHs.

2.2.1 Household Particulars

Demographic and socio-economic particulars such as age, sex, occupation, literacy level, family income, possession of agricultural land and live stock, type of dwelling etc. of all the household members were collected, by administering an household schedule in all the households.

2.2.2 Nutrition Assessment

In each village, all the 20 selected HHs, were covered for nutrition assessment. Anthropometric measurements like height, weight, arm circumference and fat fold at triceps were taken on all the available members of the households, using standard equipment and procedures ${ }^{1}$. They were also examined for the presence of clinical signs of nutritional deficiencies.

2.2.3 Diet Survey

Diet survey was conducted in every alternate HH (10 HHs) covered for nutrition assessment. While one-day weighment diet survey was conducted in 5 HHs to assess intakes at the household level, 24 -hour recall method of diet survey ${ }^{2}$ was conducted in the rest of the households, to assess individual intakes. The following Table presents the number of HHs covered for different investigations in each selected village and the total sample covered for various activities.

Method of Survey	No. of HHs Covered
Household socioeconomic profile, Anthropometry \& Clinical Examination	20
Household diet survey	5
Individual diet Survey	5

2.3 ANALYSIS

2.3.1 Food and Nutrient Intake of Individuals

The average daily food and nutrient intakes of different physiological groups in the households surveyed were computed. The nutrient intakes were calculated using the values given in Nutritive Value of Indian Foods ${ }^{4}$. The food intakes were compared with the levels recommended in balanced diets for Indians $(1981)^{5}$, whereas the average intakes of nutrients were compared with the levels suggested in Nutrient requirements and Recommended Dietary Allowances (RDA) for Indians (1990) ${ }^{3}$.

2.3.2 Anthropometry

Mean heights and weights were calculated according to age and sex. The distance charts for height and weights were compared at both the points of surveys, as well as with those of the National Centre for Health Statistics (NCHS) standards ${ }^{6}$.

2.3.2.1 SD Classification

Recently, large scale national surveys like National Family Health Survey $(1993)^{7}$ have adopted Standard Deviation classification ${ }^{8}$ for assessing undernutrition. Therefore, for the purpose of comparison, the percent distribution of adolescents was calculated using NCHS reference values for weight for age to assess undernutrition, and 'height for age', to assess the extent of stunting. Details of the SD classification are given below:

Cut-off level	Nutritional Status	
	Weight for age	Height for age
>Median-2SD	Normal	Normal
Median-2SD to Median-3SD	Moderate undernutrition	Moderate stunting
<Median -3SD	Severe undernutrition	Severe stunting

3. RESULTS

The anthropometric data obtained on 12,124 adolescents and 24 hour recall dietary information on 2,579 individuals in 1996-97 were analyzed to assess (i) the diet and nutritional status of adolescents from eight States, and (ii) the role of socioeconomic factors on nutritional status. These results were compared with the anthropometric data obtained on 24,683 adolescents and dietary information on 3,313 individuals obtained from the same villages in 1975-79. The distribution of the sample covered in different States is presented in Table-1.

Table 1 Distribution of Adolescents sample Covered
in Different States

State	1975-79	$1996-97$
Kerala	2330	1304
Tamilnadu	2458	1234
Karnataka	3786	2516
Andhra Pradesh	2855	965
Maharastra	2840	1148
Gujarat	3340	673
Madhya Pradesh	1418	325
Orissa	741	2372
West Bengal	2489	-
Uttar Pradesh	2426	1587
Total		24683

COVERAGE
DIET SURVEY

- House holds: 2,579

ANTHROPOMETRY

- Individuals: 12,124

3.1 CURRENT DIETARY AND NUTRITIONAL STATUS

3.1.1 Profile of the sample surveyed

The coverage of children by sex for anthropometry and diet survey is given in -Table-2\&3. The socio-economic and demographic profile of the sample covered is given in Table-4. Majority of them (90.8%) belonged to Hindu religion, while about 27% belonged to scheduled caste community. About 30% belonged to backward communities and about 12% were from scheduled tribes. In general, the families
were large with over 77% belonging to families with 5-10 family members. About 42% of the heads of the households were illiterate.

Almost all the adolescents (97.9\%) were residing in their own houses. About 61% of the houses were kutcha as compared to 8.1% pucca houses. More than a third (37.3\%) of the households did not possess any land. The major occupation was agriculture with most of the families belonging to either labourers (27\%) or tenant/owner cultivators (45.5\%). The mean per capita income (PCI) per month of the household was about Rs.250/- at 1996-97 prices. Per capita income of different quartiles was also calculated. It was interesting to note that while the Mean PCl in the lowest quartile was Rs.77/-, in the highest quartile group, it was Rs.626/- indicating the wide variations in the socio-economic status of the rural households.

Table 2 Age and Sex Wise Distribution of Children Covered for Anthropometry

Age (Years)	1975-79		1996-97	
	Boys	Girls	Boys	Girls
$10+$	2237	1781	1055	979
$11+$	1529	1214	663	795
$12+$	2616	1877	1062	914
$13+$	1754	1226	697	842
$14+$	1752	1237	722	750
$15+$	1420	1070	653	641
$16+$	1589	1231	678	654
$17+$	1349	801	519	500
TOTAL	$\mathbf{1 4 2 4 6}$	$\mathbf{1 0 4 3}$	$\mathbf{6 0 4 9}$	$\mathbf{6 0 7 5}$

Table 3 Sample covered for individual intake Diet Survey according to
Age and Sex

Age (Yrs)	1975-79		1996-97	
	Boys	Girls	Boys	Girls
$10-12$	806	725	522	524
$13-15$	528	462	404	435
$16-18$	399	393	333	361
TOTAL	$\mathbf{1 7 3 3}$	$\mathbf{1 5 8 0}$	$\mathbf{1 2 5 9}$	$\mathbf{1 3 2 0}$

Table 4 Socio-economic Profile of Households covered

Variable	Description	Percentage
Religion	Hindu	90.8
	Muslim	5.6
	Christian	2.1
	Others	1.4
Community	ST	12.1
	SC	27.2
	BC	29.6
	Others	31.1

Table 4 Socio-economic Profile of Households covered (contd.)

Variable	Description	Percentag
Type of family	Nuclear	62.
	Joint	9
	Extended	16.
Family Size	$1-4$	16.
	$5-10$	0
	$\geq \geq 10$	77.
Literacy	Illiterate	41.
	Literate	9
House	\geq Primary	2.6
Own	97.	
Type of House	Kutcha	60.
	Semi Pucca	8
Land holdings	Pucca	31.
(acres)	Nil	37.
Occupation	$0-5$	3
	≥ 5	8.6
	Labourer	27.0
	Agriculturist	45.5
	Artisans/Business/	
	Service	24.1
	Others	3.4

Mean Per Capita monthly Income by quartiles	
Quartiles	(Rs.)
I	77
III	141
III	228
IV	626
Average	250

3.1.2 Marital Status

One of the risk factors among adolescent girls is early marriage causing early cessation of growth leading to birth of low birth weight baby. The proportion of adolescent girls getting married before the legal age of 18 years was 23%. Among the married adolescent girls, the proportion of the girls considered 'at risk' due to short stature ($<145 \mathrm{cms}$) was 24.1% and under weight ($<38 \mathrm{~kg}$) was 18.6%. In other words, these adolescent girls could be considered as at risk ${ }^{9}$ in terms of pregnancy outcome.

3.1.3 Nutritional Anthropometry

3.1.3.1 Mean Anthropometric measurements

The mean and median anthropometric measurements of adolescent children are presented in Table-5. Distance charts for heights and weights by sex are presented in Fig. 1. The girls overtook boys at about 11 years and the boys over took the girls at about 13 years, after which the boys were significantly taller than girls $-(\mathrm{P}<0.01)$. In other words, in the case of the girls, the puberty started about 2 years earlier than the boys. At the age of 17 years, the girls were shorter in height than the boys by about 10 cms and weighed 3 kgs less. At all ages, the adolescents were shorter and lighter than their American counterparts (NCHS).

Fig -1.

DISTANCE CHART FOR HEIGHT AND WEIGHT OF ADOLESCENTS BY SEX

Table 5 Average Heights and Weights of Boys and Girls according to Age

$\begin{array}{\|c\|} \hline \text { Age } \\ \text { (Years) } \end{array}$		Boys				Girls			
		Height (cm)		Weight (kg)		Height (cm)		Weight (kg)	
		1975-79	1996-97	1975-79	1996-97	1975-79	1996-97	1975-79	1996-97
10+	Mean	125.8	128.1	22.1	23.1	125.8	128.1	22.1	23.1
	SD	7.2	7.0	3.6	3.8	7.6	7.2	3.9	3.8
	Median	125.7	127.3	21.8	22.9	125.4	128.0	21.6	22.9
11+	Mean	130.2	133.1	23.8	25.1	131.0	133.1	24.4	25.7
	SD	7.1	6.6	3.7	3.9	7.8	7.3	4.0	4.4
	Median	130.4	133.0	23.6	24.9	130.8	133.2	24.0	25.0
12+	Mean	134.8	137.4	26.1	27.3	135.4	138.4	27.1	28.7
	SD	7.7	7.5	4.3	4.7	7.9	7.5	5.0	5.4
	Median	134.8	137.4	25.7	26.6	135.8	138.7	26.6	28.1
13+	Mean	139.5	143.0	28.6	30.8	140.3	144.1	30.4	32.6
	SD	7.9	8.0	4.8	5.8	8.2	6.8	5.6	5.6
	Median	139.4	142.6	28.1	30.2	140.9	144.3	30.0	32.5
14+	Mean	145.3	148.6	32.4	34.8	145.1	147.9	34.5	36.0
	SD	8.6	8.4	6.0	6.4	7.4	6.5	6.2	5.5
	Median	145.7	149.1	32.0	34.0	145.6	148.2	34.5	36.0
15+	Mean	150.6	153.0	35.9	38.6	147.5	149.8	37.5	38.9
	SD	8.8	8.6	6.5	6.4	6.7	6.1	6.2	5.8
	Median	151.1	153.3	36.0	38.5	147.6	150.4	37.3	39.0
16+	Mean	155.9	158.0	40.1	42.3	149.4	151.2	39.9	41.3
	SD	7.8	8.4	6.2	6.8	6.2	5.8	5.7	5.2
	Median	156.6	159.0	40.3	42.1	149.4	151.3	39.8	41.0
17+	Mean	159.1	161.2	43.1	46.0	150.0	152.1	41.1	42.8
	SD	7.0	7.0	5.9	6.2	6.2	6.3	5.6	5.6
	Median	159.6	161.5	43.2	45.8	150.1	152.5	40.6	42.8

3.1.3.2 SD Classification

The adolescents were categorized into different grades of nutritional status, based on weight for age and height for age by SD classification using NCHS Standards. All those children with weight for age / height for age equal to or more than Median - 2SD were taken as normal, those with Median - 2SD to Median 3SD as moderately undernourished and all those with <Median - 3SD were taken as severely undernourished.

Stunting

The Z analysis of data indicated that the over all prevalence of stunting (<Median height -2SD) was similar in both the sexes (boys: 39.5% and girls: 39.1%). The percentage of stunting increased as the age advanced in boys from 34.7% at 10 years to 59.7% at 17 years. In the case of girls, the percentage of stunting increased with increasing age (32.5% to 46.7%) up to 13 years after which it decreased to 37.2% at the age of 17 years (Table-6).

Underweight

In case of body weights, the percent of undernutrition (<Median -2SD of NCHS weight for age) in males was 53.1% as compared to females (39.5\%). As in the case of height, the percent Of boys with undernutrition increased from 41.6% at 10 years to 68.6% at 17 years, while in girls, the extent of under nutrition increased (37.8% to 45.3%) till the age of 12 years and plateaued at 39.0% in the later age groups (Table-6).

Table 6 Per cent Distribution of Adolescents According to Stunting and Underweight

Age (Yrs)	Boys		Girls	
	Stunting (Height for Age <Median-2SD)	Underweight (Weight for Age <Median -2SD)	Stunting (Height for Age <Median-2SD)	Underweight (Weight for Age <Median -2SD)
$10+$	34.7	41.6	32.5	37.8
$11+$	31.2	42.1	37.4	42.4
$12+$	32.8	51.6	44.7	45.3
$13+$	32.1	51.2	46.7	37.6
$14+$	36.3	55.8	41.2	35.7
$15+$	48.9	58.5	37.9	39.0
$16+$	51.8	66.1	34.1	39.0
$17+$	59.7	68.6	37.2	37.6
x^{2}	$223.85(\mathrm{P}<0.01)$	$195.8(\mathrm{P}<0.01)$	$60.9(\mathrm{P}<0.01)$	$23.3(\mathrm{P}<0.01)$

ANTHROPOMETRY

- The proportion of stunted increased with increasing of age.
- The percent of undernutrition was higher in boys than in girls.

Body Mass index

It is well known that Body Mass Index (BMI) is not constant with age in growing children. Hence, medians of BMI were calculated to assess the differences between ages (Table-7). These BMI values for age and sex were compared with those reported for NHANES survey in USA. The proportion of adolescents below the $5^{\text {th }}$ percentile of NHANES ranged from 44% in 17 years age group to 77.6% in 11 years among boys and from 16.4% in 17 years to 62.7% in 10 years among girls. However, the extent of undernutrition was considerably less among girls than their male counterparts in each of the age groups (Table-8).

Table 7 Median Body Mass Index of Adolescents

Age (Years)	$1975-79$		$1996-97$		NHANES	
	Boys	Girls	Boys	Girls	Boys	Girls
$10+$	13.9	13.9	13.7	13.9	16.7	17.0
$11+$	14.0	14.2	13.9	14.2	17.3	17.7
$12+$	14.4	14.8	14.3	14.7	17.9	18.4
$13+$	14.7	15.4	14.8	15.5	18.5	18.9
$14+$	15.3	16.4	15.4	16.5	19.2	19.3
$15+$	15.8	17.2	16.0	17.3	19.9	19.7
$16+$	16.5	17.9	16.8	17.9	20.6	20.1
$17+$	17.0	18.3	17.6	18.5	21.1	20.4

Table 8 Distribution of adolescents below $5^{\text {th }}$ Percentile of NHANES - BMI

Age (Years)	Boys	Girls
$10+$	72.7	62.7
$11+$	77.6	61.0
$12+$	76.9	57.1
$13+$	72.2	47.2
$14+$	70.5	32.2
$15+$	64.6	25.0
$16+$	56.9	19.2
$17+$	43.9	16.4

3.2 FOOD AND NUTRIENT INTAKE

The Mean daily intakes of different foods of adolescents according to age and sex are presented in Tables-9 \& 10.

The mean intakes of all the nutrients were below the RDA in all the age groups of adolescents irrespective of sex. (Tables-11,12 \& 13)

In order to assess the extent of severity of food deficit, the nutrient intakes were expressed as \% of RDA and the distribution of adolescents consuming <50\% and $<70 \%$ of RDA was calculated for both the sexes (Table-14). In general, in both the sexes, the proportion of adolescents consuming inadequate amounts was higher in case of micronutrients than that of protein, energy and total fat. More than twothirds of adolescents were consuming $<70 \%$ RDA for vitamin A and riboflavin. It was interesting to note that because of higher RDA in boys, the extent of deficiency with respect to iron was higher than in girls.

ع0＇29	80 ＇t9	＋0．98	Z6．82	81－¢81	て1「691	8でしく1	0＜＇801	\＆9＇ャ6	80＇$\varepsilon \varepsilon$	L1－$\varepsilon \varepsilon$	99 $2 \angle 1$	LS＇Ztて	61．802	as	8T－9］
$\angle 9$	09	$\varepsilon 1$	$L Z$	Sce	88	Stt	89	†G	01	82	9 S	821	t8\＆	иеә）	
ZS＇\＆SL	S6．89	く9じ	¢でしع	†L＇891	tS＇191	ャ9＇Stレ	10＇18	ZL＇Z9	$10^{\circ} \angle Z$	てع＇0¢	9ع．8SL	0t＇c\＆z	E9＇Z61	OS	ST－EI
ャG	カ	91	92	L0E	26	00t	6 t	0t	8	¢z	£ ℓ	ャ®レ	998	иеәN	
でて¢	OZ＇ts	Ls＇9t	$98 . \angle Z$	とで091	0ε＇tSt	ド・8で	68＇99	S＇691	29＇92	10＇s¢	08＊0S1	78．661	97 －$¢ 91$	as	乙T－0T
じ	8ε	カ1	¢	$6 \downarrow 2$	66	$6 \downarrow$ ¢	Ot	εt	8	ャて	LOZ	LZし	$8 乙 \varepsilon$	иеәW	
															su！
86．19	で¢ ¢	78．19	10＇s ε	98．012	02\％6z2	6と＇ZOZ	20．801	LS＇EL	ZL＇ャ	ドカら	69＇6zZ	92093	\＆s＇レLZ	as	8T－9］
Z9	89	$\varepsilon 乙$	乙\＆	L68	8LL	GIS	19	$8{ }^{\text {8 }}$	01	9ε	ع1ع	OSL	ع9t	иеәW	
69＇99	ZL＇LL	$\angle \nabla^{\prime} \mathrm{C}$ ¢	$89^{\circ} 0 \varepsilon$	97.581	98．902	9ع＇8LL	$66^{\prime} 16$	Lナ＇$¢ 8$	い＇6を	$96^{\circ} \downarrow \varepsilon$	ZL＇261	6でLOZ	てて＇て61	as	ST－EI
6t	$\angle t$	21	82	80ε	OZ1	8てt	19	19	Z1	92	898	OZ1	8LE	иеәW	
$00 \cdot ६ \varsigma$	Z8＇8t	てで0t	0＜ 8 8	カl＊6Sl	0＜＇991	Gぐレレレ	LL＇9	\＆t＇z9	\＆0＇乙®	LE＇0t	S002L	06＇Z61	St＇ 291	as	2T－0¢
6ε	¢	S1	92	$\varepsilon \angle 乙$	86	$1 \angle \varepsilon$	εt	け	6	$\angle 乙$	OZ乙	0Z1	$0 \downarrow \varepsilon$	uean	
															sKog
$\begin{array}{\|c\|} \hline \text { s.aqn_ } \\ \gamma \\ \text { stooy } \end{array}$	$\begin{gathered} \text { 'бәл } \\ \text { ィәчłо } \end{gathered}$	－「ə＾ Кџеәา иәәл	sas｜nd	ธцеәлә	słว！！！	ธцедәว	$\begin{gathered} \text { sıaqnı } \\ \text { r } \\ \text { słooy } \end{gathered}$	$\begin{aligned} & \text { ‘бәл } \\ & \text { ィәчəо } \end{aligned}$	－மə＾ кчеәา иәәл	${ }_{\text {sas }}{ }^{\text {nd }}$	ธгеләэ	słวl！${ }^{\text {N }}$			（s．ead） dnods ә6 \forall
L6－966							6L－SL6I								

sdnoגפ ә6ฤ Кq（Кер／6）səyełul poos 6 әqеュ

L2＇61	†＜ 6	80．011	St゙レ	$\angle \varepsilon^{\prime} \angle t$	$\angle 6 \angle t$	96゙ャレ	$\downarrow 6 \bullet \downarrow$	00＇LZ	\＆ร．$¢$	ャ9＇ャ6	Ot＇で	LL＇LZ	ャع＇z9	2901	L681	as	
61	い	LL	も	81	乙て	\＆1	81	Sl	6	\＆S	1	6	Sl	O1	6	บеวN	8L－91
$6 \downarrow$＇\＆	t0＊6	乙ど68	08＊	てて＇St	G1．0¢	06.6	60＇\＆乙	LL＇OZ	OZOL	L9＇ャ8	$90 \cdot 9$	とャワワて	¢でレع	Lでとし	Slı2l	as	
81	OL	9 S	ε	ャレ	91	い	い	91	L	6 t	1	8	6	O1	L	บеวก	Sl－EL
01．0Z	Zs＇6	0ヵ＇¢8	$8 \varepsilon \angle L$	Z8．9	SZてZs	sciol	89＇ZZ	$10 \cdot \mathrm{Zz}$	\＆とてん	S6．6L	ع0\％6	$69^{\circ} \mathrm{E}$ ¢	66.0ε	S0＇L	997L	OS	
61	6	$\varepsilon \varsigma$	ε	Zし	ZZ	い	い	ャ	L	St	1	9	01	01	G	บеวิ	$\mathrm{Zl}-\mathrm{OL}$
																	s
00＇61	8G＇ャレ	ع8．001	01．92	S0＇ss	LI＇OS	S9｀18	カ9＇Zヵ	$\varepsilon \varepsilon^{\prime} \downarrow Z$	E6＇sl	0がしてし	$19^{\circ} \mathrm{L}$	\＆s 8 8	8L＇LE	$69^{\circ} \mathrm{L}$	09＊ 21	as	
61	$\varepsilon 1$	89	G	七乙	七て	91	$0 Z$	91	OL	\downarrow ¢	1	6	01	い	9	ueaw	8l－91
0ع6＇61	LZ＇OL	St＇sOL	79．81	い「らt	$9 て ゙ \downarrow$ ¢	$9 t^{\prime} \mathrm{ZL}$	88＇8Z	とt＇6L	$\angle 0^{\circ} \angle Z$	とがしOL	10.8	¢G＇\＆	さでしけ	68.6	$\dagger L \cdot \varepsilon 乙$	OS	
61	い	S9	\checkmark	81	¢ ε	\＆1	Sl	Sl	6	IS	1	6	OL	6	8	บеวิ	Sl－EL
レヵてZ	\＆と＇SL	9t＇ZOL	$86 . \varepsilon 1$	Ls＇zt	いじく	8601	86．LZ	8ع＇0Z	09．01	60．16	8て＇9	LİLZ	01＇s $\underbrace{\text { c }}$	ャع＊OL	ャ6：81	OS	
61	レ	99	ε	ャ	02	Z1	01	ャ	L	$\angle t$	\downarrow	L	01	6	9	иеәW	ZL－OL
																	sKog
$\begin{gathered} \text { 'ббег } \\ 8 \\ \text { reбns } \end{gathered}$	Sle」	$\begin{gathered} \text { pord } \\ \text { y!!w } \\ \text { ס } \end{gathered}$	$\begin{aligned} & \text { spood } \\ & \text { पsely } \\ & \text { дəчłO } \end{aligned}$	पS！${ }^{\text {d }}$	St！nne	$\begin{gathered} \hline \text { seoplds } \\ \text { 8 } \\ \text { !puoo } \end{gathered}$	$\begin{array}{r} \text { spəәs } \\ 1!0 \quad 8 \\ \text { s } \ddagger \text { n } \end{array}$	$\begin{gathered} \text { '6бег } \\ 8 \\ \text { réns } \end{gathered}$	Sted		$\begin{gathered} \text { spoog } \\ \text { ysəy } \\ \text { дəчłO } \end{gathered}$	पS！${ }^{\text {d }}$	Stundy	$\begin{array}{c\|} \hline \text { sou!ds } \\ 8 \\ \text { !puoo } \end{array}$	$\begin{array}{r} \hline \text { spəәS } \\ \text { I!O 8 } \\ \text { słnN } \end{array}$		（s．еәә） dnos ә6甘
L6－966								6L－GL6L									

Table 11 Average daily Intake of Nutrients among 10-12 year adolescents by Sex and Period of survey

Nutrients		Boys		Girls	
		1975-79	1996-97	1975-79	1996-97
Protein (g)	Mean	43	46	41	43
	Median	40	43	39	40
	SD	19.63	17.8	18.52	16.12
Total Fat (g)	Mean	19	24	18	22
	Median	14	19	14	18
	SD	16.2	17.77	15.18	15.88
Energy (kcal)	Mean	1552	1749	1484	1643
	Median	1438	1719	1394	1614
	SD	603.3	551.14	557.09	501.14
Calcium (mg)	Mean	407	439	387	419
	Median	271	320	268	313
	SD	422.23	360.72	416.95	355.81
Iron (mg)	Mean	21.6	21.4	20.7	20.3
	Median	18.8	19.8	17.9	18.5
	SD	11.4	9.2	11.1	9.7
Vitamin A ($\mu \mathrm{g}$)	Mean	109	276	185	243
	Median	101	131	105	111
	SD	300.6	427.73	270.70	478.51
Thiamin (mg)	Mean	1.14	1.05	1.08	0.99
	Median	1.00	0.90	0.90	0.80
	SD	0.81	0.62	0.78	0.55
Riboflavin (mg)	Mean	0.67	0.80	0.62	0.73
	Median	0.60	700.00	0.60	0.70
	SD	0.39	0.39	0.36	0.32
Niacin (mg)	Mean	11.2	11.1	10.7	10.3
	Median	9.5	10.3	9.1	9.3
	SD	6.2	4.9	5.9	4.5
Vitamin-C (mg)	Mean	29.6	33.6	28.8	33.5
	Median	21.0	23.9	19.9	24.4
	SD	31.8	33.0	54.9	36.7

Table 1211 Average daily Intake of Nutrients among 13-15 year adolescents by Sex and Period of survey

Nutrients		Boys		Girls	
		1975-79	1996-97	1975-79	1996-97
Protein (g)	Mean	48	52	45	48
	Median	43	49	41	44
	SD	21.52	19.28	19.51	18.72
Total Fat (g)	Mean	22	28	19	23
	Median	17	22	16	20
	SD	29.64	18.66	14.18	10.56
Energy (kcal)	Mean	1732	1990	1627	1853
	Median	1619	1899	1566	1812
	SD	699.40	643.32	604.5	502.8
Calcium (mg)	Mean	442	491	407	451
	Median	304	368	299	324
	SD	454.69	420.35	396.32	402.3
Iron (mg)	Mean	23.8	23.8	22.1	22.5
	Median	20.7	21.4	19.9	20.8
	SD	13.0	10.6	11.3	9.2
Vitamin A ($\mu \mathrm{g}$)	Mean	228	275	186	266
	Median	114	138	103	133
	SD	384.94	460.79	271.73	359.7
Thiamin (mg)	Mean	1.26	1.20	1.18	1.08
	Median	1.00	1.00	1.00	0.90
	SD	0.92	0.74	0.83	0.63
Riboflavin (mg)	Mean	0.74	0.88	0.69	0.82
	Median	0.60	0.80	0.60	0.70
	SD	0.43	0.41	0.36	0.40
Niacin (mg)	Mean	12.6	12.5	11.7	11.5
	Median	10.4	11.6	10.3	10.6
	SD	7.3	5.4	6.1	4.7
Vitamin-C (mg)	Mean	36.8	37.8	30.2	38.4
	Median	24.2	27.0	22.1	28.2
	SD	43.4	40.3	29.4	37.8

Table 1311 Average daily Intake of Nutrients among 16-18 year adolescents by Sex and Period of survey

Nutrients		Boys		Girls	
		1975-79	1996-97	1975-79	1996-97
Protein (g)	Mean	58	62	48	52
	Median	55	58	44	50
	SD	26.33	23.5	20.7	18.05
Total Fat (g)	Mean	23	33	22	29
	Median	17	26	17	24
	SD	19.65	24.04	17.98	19.67
Energy (kcal)	Mean	2036	2371	1751	2069
	Median	1927	2276	1704	2019
	SD	741.75	741.12	630.16	573.0
Calcium (mg)	Mean	478	579	436	496
	Median	328	438	317	361
	SD	494.60	455.6	386.68	415.12
Iron (mg)	Mean	27.9	29.0	23.9	23.7
	Median	25.3	25.7	22.2	21.7
	SD	13.9	12.5	11.7	8.8
Vitamin A ($\mu \mathrm{g}$)	Mean	230	426	234	258
	Median	120	184	115	145
	SD	366.9	1102.5	419.02	324.8
Thiamin (mg)	Mean	1.52	1.37	1.23	1.14
	Median	1.30	1.10	1.00	0.90
	SD	1.02	0.83	0.86	0.65
Riboflavin (mg)	Mean	0.86	1.06	0.74	0.90
	Median	0.80	1.00	0.60	0.80
	SD	0.46	0.51	0.40	0.37
Niacin (mg)	Mean	15.3	14.9	12.6	12.6
	Median	13.5	13.6	10.9	11.9
	SD	8.1	6.2	6.6	5.0
Vitamin-C (mg)	Mean	35.6	46.7	37.9	40.8
	Median	23.7	37.2	25.8	32.4
	SD	38.3	40.0	40.4	33.6

NUTRIENT INTAKES

- Median nutrient intakes were below the RDA.
- About 60-80 \% of adolescents consumed micronutrients $<70 \%$ of RDA.

3.3 TIME TRENDS

As indicated earlier, the changes in the diet and nutritional status, if any, were assessed by comparing the data collected during 1975-79 and 1996-97.

3.3.1 Secular trends in growth

Distance charts for height and weight for each sex according to period of survey are presented in Figs. 2 and 3. The adolescents measured during 1996-97 were significantly taller and heavier than their counterparts studied in 1975-79 indicating secular changes in growth during a period of twenty years. There was an increase to the extent of 2.5 to 3.5 cm and 1 to 1.5 kg , which was statistically significant ($\mathrm{P}<0.05$).

3.3.2 Nutrient Intakes

The distribution of children according to intakes expressed as \% RDA (<70\% and $<50 \%$ of RDA) at both the points of time indicates that in the case of most of the nutrients there was reduction in the proportion of adolescents having deficient dietary intakes over the last two decades. The extent of severe deficit with respect to energy ($<50 \%$ of RDA) decreased from 21% to 9% in boys and 14% to 5% in girls in 1996-97 as compared to 1975-79. The extent of decline in case of Iron and vitamin 'A' was less as compared to other nutrients. In other words, in general, there was improvement in the nutrient intakes (Table-14; Figs. 4 to 7) over a period of two decades.

Table 14 Distribution (\%) of Adolescents according to Intake of Nutrients as \% of RDA

Nutrients	Percent RDA	Boys		Girls		
		Protein		<50	$7975-79$	$1996-97$
Total Fat	<70	23.4	$1975-79$	$1996-97$		
	<50	32.3	12.9	25.2	18.2	
Energy	<70	50.6	31.6	54.3	23.0	
	<50	21.1	9.3	14.3	37.7	
	<70	54.3	34.0	43.5	24.8	
Calcium	<50	48.8	36.9	49.0	43.2	
	<70	65.6	54.2	68.7	59.6	
Iron	<50	45.8	41.5	18.1	10.8	
	<70	70.9	73.2	39.1	35.5	
Vitamin A	<50	84.8	75.4	85.1	79.0	
	<70	89.2	82.2	90.0	83.8	
Thiamin	<50	29.1	19.0	30.6	16.2	
	<70	41.1	41.4	40.4	39.5	
Riboflavin	<50	59.5	43.1	55.4	37.8	
	<70	80.2	73.6	74.7	64.5	
Niacin	<50	27.1	18.6	22.8	13.6	
	<70	52.9	46.3	46.6	40.6	
	<50	45.0	36.5	46.1	37.2	
	<70	58.8	49.7	60.0	49.6	

Fig-2.
DISTANCE CHART FOR HEIGHT BY YEAR OF SURVEY

(Cms)

Fig-3.
DISTANCE CHART FOR WEIGHT BY YEAR OF SURVEY

Fig-4.
DISTRIBUTION OF ADOLESCENTS WITH PROTEIN
INTAKE OF <RDA

Fig-5.
DISTRIBUTION OF ADOLESCENTS WITH ENERGY INTAKE OF <RDA

Fig-6.
DISTRIBUTION OF ADOLESCENTS WITH VITAMIN A INTAKE OF <RDA

Fig-7.
PERCENT DISTRIBUTION OF ADOLESCENTS WITH IRON INTAKE OF <RDI

Food and Nutrient Intake

- Cereal intake increased over period in all ages.
- Intakes of income elastic foods such as fish, fruits, milk, fats \& oils and sugar increased in all ages.
- Intakes of all the nutrients except thiamin increased in all the ages in both sexes.

Anthropometry

- Adolescents in 1996-97 were significantly taller and heavier than their counternarts in 1975-79.

3.3.3 Socio-economic factors and dietary and nutritional status

The association between various demographic and socio-economic on one hand and anthropometric parameters on the other was studied. For the purpose, standard deviation classification of height/age and weight/age were used. For assessing the significance of relationships of each variable ${ }^{\chi^{2}}$ test was used. The adolescents were divided into two groups of normal (Median-2SD) and undernourished (<Median -2SD).

The variables like religion, community, type of family, literacy status, type of house, land holdings, occupation and per capita income were significantly associated with the nutritional status as assessed by height/age ($\mathrm{P}<0.05$) (Table-15). The extent of stunting in Christians was marginally less (31.8\%) than among Hindus (39.4\%), and those of SC community (42.7%). The adolescents belonging to extended family had lower prevalence of stunting (34.6\%) as compared to those belonging to joint family (42.0\%).

The percentage of stunting among adolescents was higher in those living in kutcha houses (40.5\%) than those living in pucca houses (31.8\%). The extent of stunting was higher in labourer families (40.3\%). The extent of stunting decreased with increasing size of land holdings. The prevalence of stunting among adolescents decreased with increasing per capita income.

All the demographic variables like religion, community, type of family, family size, literacy status, type of house, land holdings, occupation and per capita income were significantly associated with weight/age ($\mathrm{P}<0.05$) (Table-15). The percentage of undernutrition was higher among Hindus (46.2\%) and those from ST community. On the other hand, among the adolescents belonging to extended family, the percentage of undernutrition was less (40.7%) as compared to joint family (48.6%). The adolescents of literate head of the household had lower undernutrition.

The extent of undernutrition was higher among those living in kutcha houses; involved in agriculture labour, among the landless and those with lower PCI.

Table 15 Distribution of Adolescents according to Stunting and Under Weight by Socioeconomic status

Variable	Description	\% Stunted (<Median2SD)	ChiSquare	$\begin{gathered} P \\ \text { Value } \end{gathered}$	\% Under- Weight (<Median- 2SD)	ChiSquare	$\begin{gathered} \mathbf{P} \\ \text { Value } \end{gathered}$
Religion	Hindu Muslim Christian Others	$\begin{aligned} & 39.4 \\ & 36.7 \\ & 31.8 \\ & 49.6 \\ & \hline \end{aligned}$	12.2	<0.05	$\begin{aligned} & 46.2 \\ & 43.9 \\ & 34.3 \\ & 55.6 \\ & \hline \end{aligned}$	16.9	<0.05
Community	$\begin{gathered} \hline S C \\ S T \\ B C \\ \text { Others } \end{gathered}$	$\begin{aligned} & 42.7 \\ & 37.6 \\ & 39.3 \\ & 37.0 \\ & \hline \end{aligned}$	20.0	<0.05	$\begin{aligned} & 45.0 \\ & 49.4 \\ & 46.2 \\ & 43.1 \end{aligned}$	22.0	<0.05
Type of Family	Nuclear Joint Extended	$\begin{aligned} & 40.0 \\ & 42.0 \\ & 34.6 \\ & \hline \end{aligned}$	23.8	<0.05	$\begin{aligned} & 46.9 \\ & 48.6 \\ & 40.7 \end{aligned}$	28.0	<0.05
Family Size	$\begin{gathered} 1-4 \\ 5-10 \\ >10 \end{gathered}$	$\begin{aligned} & 37.7 \\ & 39.8 \\ & 36.6 \\ & \hline \end{aligned}$	4.2	>0.05	$\begin{aligned} & 44.5 \\ & 46.6 \\ & 40.4 \end{aligned}$	10.2	<0.05
Literacy	Illiterate Literate \geq Primary	$\begin{aligned} & 40.8 \\ & 45.3 \\ & 37.8 \\ & \hline \end{aligned}$	12.5	<0.05	$\begin{aligned} & 48.3 \\ & 48.2 \\ & 44.2 \\ & \hline \end{aligned}$	15.7	<0.05
Own house	Owned Not owned	$\begin{aligned} & 39.1 \\ & 44.4 \\ & \hline \end{aligned}$	0.2	>0.05	$\begin{aligned} & 45.8 \\ & 47.4 \\ & \hline \end{aligned}$	0.2	>0.05
Type of House	Kutcha Semi Pucca Pucca	$\begin{aligned} & 40.5 \\ & 38.9 \\ & 31.8 \end{aligned}$	21.8	<0.05	$\begin{aligned} & 48.3 \\ & 44.1 \\ & 35.2 \\ & \hline \end{aligned}$	52.7	<0.05
Land holdings (acres)	$\begin{gathered} \begin{array}{c} \mathrm{Nil} \\ 0-5 \\ >5 \end{array} \end{gathered}$	$\begin{aligned} & 41.7 \\ & 33.7 \\ & 38.5 \end{aligned}$	21.0	<0.05	$\begin{aligned} & 48.1 \\ & 43.2 \\ & 44.8 \end{aligned}$	11.8	<0.05
Occupation	Labourer Farmer Artisan/Business/Service Others	$\begin{aligned} & 40.3 \\ & 39.4 \\ & \\ & 39.5 \\ & 27.5 \\ & \hline \end{aligned}$	19.5	<0.05	$\begin{aligned} & 47.4 \\ & 46.6 \\ & \\ & 44.6 \\ & 34.8 \\ & \hline \end{aligned}$	20.2	<0.05
Mean per Capita Monthly Income (Rs.) by Quartiles	$\begin{gathered} <25 \\ 26-50 \\ 51-75 \\ \geq 76 \end{gathered}$	$\begin{aligned} & 42.9 \\ & 41.6 \\ & 39.0 \\ & 33.4 \end{aligned}$	51.2	<0.05	$\begin{aligned} & 49.7 \\ & 47.6 \\ & 45.9 \\ & 40.1 \end{aligned}$	48.5	<0.05

SOCIO ECONOMIC V/s NUTRITION STATUS

- Extent of stunting was significantly higher in SC community.
- Prevalence of undernutrition was higher among ST community.
[] Proportions of stunted were higher, in adolescents living in kutcha houses.

0. The proportion of stunted and undernourished children was higher in the households with low per capita income.

4. COMMENTS

The nutritional status of adolescent girls, the 'future mothers' contributes significantly to the nutritional status of the community. An assessment of the current diet and nutritional status of adolescents was made utilizing the large data collected by the National Nutrition Monitoring Bureau (NNMB). In addition, the time trends in diet and nutritional status were determined by comparing with the data that was collected by the NNMB in 1975-79 from the same villages. Most of the adolescents belonged to families involved in agriculture with a per capita income of about Rs. 250.

About 23% of adolescent girls were married before the legal age of 18 years. Among the married adolescent girls, about 19-24\% of adolescent girls could be considered as 'at risk' because of either short stature or underweight. Undernutrition (<Median -2SD of NCHS weight for age) was widespread both in males (53.1\%) and females (39.5\%). The prevalence of stunting (<Median height -2SD) in both the sexes was similar (boys: 39.5% and girls: 39.1%).

The proportion of adolescents below the $5^{\text {th }}$ percentile of NHANES-BMI ranged from 44% in 17 years of age to 78% in 11 years among boys and from 16% in 17 years to 63% in 10 years among girls. However, the extent of thinness was considerably less among girls as compared to their male counterparts. The mean intakes of all the nutrients were below the RDA in all the age groups of adolescents irrespective of sex. In general,Xin both the sexes, about two-thirds of adolescents were consuming inadequate amounts of micronutrients. Perhaps, because of higher RDA, the extent of dietary deficiency in iron was higher in boys than in girls. There was improvement in the nutrient intakes in 1996-97 as compared to 1975-79. The extent of severe deficit with respect to energy ($<50 \%$ of RDA) decreased from 21% to 9% in boys and 14% to 5% in girls during 1975-79 to 1996-97. The adolescents measured during 1996-97 were significantly taller and heavier than their counterparts studied about two decades back indicating secular changes in growth during a period of twenty years. There was an increase to the extent of 2.5 to 3.5 cm in height and 1 to 1.5 kg in weight.

5. REFERENCES

1. Jelliffee, D.B.. Assessment of the Nutritional Status of the Community, WHO Monograph Series No.53.geneva: WHO, 1966
2. Thimmayamma.B.V.S. and Rao.D.H. A comparative study of the Oral Questionnaire Method with Actual Observation of the Dietary Intake of Preschool Children, J.Nutr.Dietet. 1969, 6: 177-181.
3. Expert Group of the Indian Council of Medical Research, Nutrient Requirements and Recommended Dietary Allowances for Indians, New Delhi: ICMR, 1990.
4. Gopalan, C, Ramasastry, B.V. Balasubramanyam, S.C. Narasinga Rao, B.S., Deosthale, Y.G. and Pant, K.C. Nutritive Value of Indian Foods, Hyderabad: NIN, 1990.
5. Expert Group of ICMR, Recommended Dietary Intakes for Indians, New Delhi: ICMR, 1981.
6. Hamill, P.V.V., Drizd, T.A., Johnson, C.L., Reed, R.B., Roche, A.F. and Moore, W.M.. Physical Growth: National Centre for Health Statistics Percentiles. American J.Clin. Nutr. 1979, 32: 607-629.
7. National Family Health Survey). India, Bombay: International Institute for Population Sciences, 1993.
8. WHO, Physical Status: The use and interpretation of Anthropometry. WHO Technical Report Series, 854, Geneva: WHO, 1995.
9. Nutrition Foundation of India, Growth of Affluent Indian Girls during Adolescence. Scientific Report No. 10, New Delhi: Nutrition Foundation of India, 1989.

NATIONAL NUTRITION MONITORING BUREAU

REPORT ON
DIET AND NUTRITIONAL STATUS OF ELDERLY

K. VIJAYARAGHAVAN
G.N.V. BRAHMAM
N. BALAKRISHNA
N. ARLAPPA

SHARAD KUMAR

ACKNOWLEDGEMENTS

SUMMARY 26

1. INTRODUCTION 27
2. MATERIALS AND METHODS 28-29
2.1 Sampling Design 28
2.2 Statistical Analysis 28
3. RESULTS AND DISCUSSION 29-57
3.1 Socioeconomic Profile 29
3.2 Dietary Consumption 30
3.3 Nutritional Status 38
4. TIME TRENDS IN FOOD AND NUTRIENT INTAKES 42-47
5. EFFECT OF SOCIOECONOMIC STATUS 48-57
5.1 Body mass Index 48
5.2 Food Intakes 50
5.3 Nutrient Intakes 55
6. CONCLUSIONS 58
ANNEXURES 59-65
REFERENCES 66

ACKNOWLEDGEMENTS

We wish to convey our thanks to Dr.A. Laxmaiah, Dr.R.Hari Kumar and Dr.M.Vishnuvardhana Rao, Senior Research Officers; Mr.Ch.Gal Reddy, Mr.KMallikharjuna Rao, and Mr.B.Surya Prakasham, Research Officers; Mr. M.Ravindranath, Technical Research Officer and Ms.M.Uma Nayak and Ms.K.Damayanthi, Nutritionists for their help during analysis.

We also thank Mr.P.Satish Babu, Mr.G.Govinda Rajulu, Ms. K. Shyamala, Ms.Vani Vijayaratnam, Ms.G.Madhavi and other staff for their technical help. Our thanks are also due to Mr. G. Hanumantha Rao and Ms. G. Prashanthi for their secretarial help.

Aging is one of the important developments of the $20^{\text {th }}$ century. The present aged population in India is about 56 million (6.7\%). There is dearth of comprehensive information on the nutritional status of elderly. This report presents the results based on the current status of the elderly population using the available large data collected in different states of the country by the National Nutrition Monitoring Bureau (NNMB). The objectives were to assess the current status of diet and nutritional status of elderly population and the time trends if any, in their diet and nutritional status over two decades.

About 922 elderly individuals were covered for diet survey and 3646 for anthropometric measurements during 1996-97, while the coverage was 858 and 3659 respectively for the period during 1975-79. The mean intakes of cereals and millets together are 445 g and 357 g in males and females respectively. The consumption of pulses, GLV and other vegetables was less than RDI in both the sexes. The mean intake of Milk and Milk Products was below the RDI. The mean and median intake of protein was slightly below the RDI in both the sexes. The mean intakes of energy for male and females are 2167 and 1764 kcals. About 65\% elderly population consumed more than the RDI of energy. In the case of vitamin A and riboflavin, the intakes were below the RDI. In about 59\%, the intakes of Vit.A were less than 30% of RDI and only 13% consumed more than the RDI. ProteinCalorie adequacy status was observed in large proportion of elderly (male: 90% and female: 67\%).

The prevalence of Chronic Energy Deficiency (CED) (BMI <18.5) was relatively more among males (53.5\%) than in females (49.4\%). The prevalence of overweight/obesity ($B M 1>25.0$) was 4.2% in males, and 7.7% in females. The mean intakes of cereals \& millets, GLV, other vegetables, nuts \& oils, milk \& milk products and sugar \& Jaggery were higher in 1996-97 than those of 1975-79. The median intakes of nutrients among the elderly were higher in 1996-97 than of 1975-79. The median intakes of most of the nutrients, except iron and niacin were statistically significantly different between periods ($p<0.05$). A comparison between periods revealed that the extent of CED declined from about 62.3\% in 1975-79 to 53.5\% in 1996-97 among males and from 63.8\% to 49.4% among females. An increasing trend was observed in the proportion of normal, overweight and obesity between 1975-79 and 1996-97.

1. INTRODUCTION

The twentieth century has seen an unprecedented transition from high birth and death rates to low fertility and mortality rates ${ }^{1}$, resulting in increased longevity. Thus, aging of the population is one of the important developments of the $20^{\text {th }}$ century during which there has been a considerable increase both in absolute and relative numbers of older people (60 years and above) in both developed and developing countries ${ }^{2}$. This new development could be attributed to decline in the mortality rates due to improved health care facilities, changed life styles and diversification of food habits.

According to the UN estimates ${ }^{2}$, the elderly population was about 350 million in 1975. The projected figures for the years 2000 and 2025 are 590 and 1,100 million respectively. Currently, it is estimated that there are about 580 million elderly people in the world, of whom 355 million are in the developing countries. By the year 2020, it is estimated that there will be more than 700 million elderly people in the developing world ${ }^{2}$. In India, the present population of elderly is about 56 million (6.7%). In 20 years time, the number is expected to increase to 158 million, constituting roughly 8 9 per cent of the total population ${ }^{2}$.

The increased proportion of aged population, due to higher life expectancy, is not necessarily devoid of any problems, and, in fact it invites a lot of socio-economic, psychological, physiological and health and nutritional problems. Hence, the health of the elderly has been attracting the attention of the medical professionals, psychologists, social scientists, nutritionists and governmental and non-governmental organizations all over the world. Adequate, appropriate and sufficient nutrition is essential to the health and well being of elderly. Generally the elderly people are nutritionally most vulnerable, the primarily due to poor dietary intake. Other factors, which contribute to undernutrition among the aged, are decreased physical activity, mental depression mostly due to isolation, maldistribution of food, poor eating habits, chronic ill health and dental problems.

In India, there is dearth of comprehensive information on the nutritional status of elderly. There is, therefore, a need to develop database on the diet and nutritional status of the elderly from different parts of the country to enable the Government and NGOs to formulate policies and initiate strategies, which would contribute to the well being of elderly population. In this report, an attempt has been made to assess the current status of the elderly population using the available large data collected in different states of the country by the National Nutrition Monitoring Bureau (NNMB) during 1996-97.

1.1 OBJECTIVES

1. To assess the current status of diet and nutritional status of elderly population in eight states where NNMB has been collecting information annually.
2. To assess time trends, if any, in their diet and nutritional status during the last two decades.

2. MATERIALS AND METHODS

The NNMB has been carrying out annual diet and nutrition surveys since 1972. The data collected during 1996-97 by the NNMB on diet and nutritional in the rural areas of Kerala, Tamil Nadu, Karnataka, Andhra Pradesh, Maharashtra, Madhya Pradesh, Gujarat, Orissa has been utilized to asses the current nutritional status of elderly ${ }^{3}$. In addition, to assess the time trends, data collected during 197579 in the same villages was utilized.

2.1 SAMPLING DESIGN

2.1.1 Selection of villages

The NNMB surveyed 120 villages in each state, 90 of which were those surveyed during 1975-79 and 30 were newly selected villages. The sample was so selected as to represent the dietary and nutritional status at the state level.

2.1.2 Selection of households

From each of the selected villages, 20 households were selected by adopting cluster-sampling method. For this purpose, the main village and its hamlets, if any, were divided into five natural clusters consisting of groups of houses/streets/bastis/ mohallas/areas, of which SC community inhabited one cluster. From each of the clusters, 4 consecutive households were surveyed by selecting the first household randomly. Of the 20 HHs , ten were selected for diet survey. Of those 5 were selected for one day household weighment diet survey and remaining 5 HHs were selected for 24 hour dietary recall on all the members of the HH

2.1.3 Information

The following information has been used:

1. Socio-economic and demographic profile of the HHs and the individuals surveyed.
2. Diet survey of individuals by 24 dietary recall.
3. Anthropometric data on height, body weight, MUAC and FFT and
4. Clinical nutrition profile.

2.2 Statistical Analysis

Statistical analysis was performed using SPSS 7.5 windows version. The data was analyzed by dividing the elderly into the following three specific age groups:

- 60-69 years
- 70-79 years
- ≥ 80 years

Mean and SD values of food intakes and mean, median and SD values of nutrient consumption were calculated according to age, sex and the periods of survey. Mean, median and SD's of anthropometric measurements for the three age groups were calculated. Comparison of mean values of food and nutrient intakes were tested by ANOVA ' F ' test with multiple comparison procedure and non parametric test of Kruskal Wallis one way ANOVA were utilized, whenever the assumption of homogeneity of variance was violated. Median test was used for comparison of medians between two periods for nutrients.

The results were compared with that of the adults below the age of 60 years (i.e. non-elderly adults). The time trends over period were assessed by comparing the data collected in 1996-97 with that collected during 1975-79.

Prevalence rates of chronic energy deficiency (CED) were calculated using Body Mass Index (BMI). BMI is the ratio between weight in kg and the square of height in metres. Association of BMI, food and nutrient intakes with socio economic parameters was analyzed with chi-square test.

3. RESULTS AND DISCUSSION

About 922 elderly individuals were covered for diet survey and 3646 for anthropometric measurements during 1996-97, while the coverage was 858 and 3659 respectively for the period during 1975-79 (Table 1).

Table 1 SAMPLE COVERAGE

Details	Year of study	Age in Years						
		$60-69$		$70-79$		280		Total
	\mathbf{M}	\mathbf{F}	\mathbf{M}	\mathbf{F}	\mathbf{M}	\mathbf{F}		
Diet Survey	$1996-97$	312	325	100	121	22	42	922
	$1975-79$	276	316	110	100	26	30	858
Nutrition	$1996-97$	1325	1295	444	390	104	88	3646
Assessment	$1975-79$	1516	1094	516	343	124	66	3659

COVERAGE		
	1975-79	1996-97
DIET SURVEY - Individuals:	858	922
ANTHROPOMETRY - Individuals:	3,659	3,646

3.1 SOCIO ECONOMIC PROFILE

The details of socioeconomic status of the population surveyed in 1996-97 are presented in Table 2.

3.1.1 Religion

Majority of households of the elderly surveyed belonged to Hindu Religion (81.6\%), while the rest were Christians (5.3\%), Muslims (4\%) and others (9.1\%).

3.1.2Community

About 29\% belonged to SC and ST population, while the rest belonged to other communities.

3.1.3Type of House

About 47.4\% of the houses were kutcha and the rest were semi pucca (39.0\%) or pucca (13.6\%).

3.1.4Type of Family

About 75\% of the households were nuclear or extended nuclear families, while the rest of 25% were joint families .

3.1.5 Major Occupation of Head of Household

Agriculture was the major occupation of a majority of the households. About 39\% of the households were engaged in agriculture, while about 21% were either agricultural labourers or other labourers.

3.1.6 Landholdings

A majority of the households belonged to either landless (39\%) or small farmers having less than 5 acres (45\%).

3.1.7 Family Size

About 30% of the elderly belonged to HHs having < 4 members, 26% of the HH had ≥ 7.

3.1.8 Literacy Status

About 65.6% of heads of the HH s were illiterates.
Table 2 SOCIO ECONOMIC PROFILE

Variable	Categories	$\%$
Community	SC+ST	29.2
	Others	70.8
Type of House	Kutcha	47.4
	Semi Pucca	39.0
	Pucca	13.6
Occupation	Nuclear*	74.9
	Joint	25.1
	Labourer	21.4
(Agres)	Others	39.3
	(Service, Business etc)	39.3
Foland	38.7	
Family size	<5	44.6
	$5-10$	9.2
	≥ 10	7.5
	$1-4$	30.4
	$5-6$	43.7
	≥ 7	25.9
	Niteracy Status	Iliterate

*Nuclear + Extended nuclear

3.2 DIETARY CONSUMPTION

3.2.1 Foods

The consumption of foodstuffs (g/day) according to age and sex is presented in Tables 3 and 4 \& Fig. 1.

The cereals and millets formed the bulk of dietaries of the elderly, as in other age groups. The intake of cereals and millets in males were 338 g and 107 g respectively, whereas in females, the intakes were 291 g and 66 g respectively.

The variation in dietary intake was large. Mean intakes of cereals and millets together were more than RDI. (Males: 445 g and Females: 357 g). In all the age groups and in both the sexes, the consumption of cereals and millets was above the RDI^{5}. The cereal intake was considerably reduced in oldest age group of ≥ 80 years.

The mean intake of pulses in male and female was 31 g and 27 g respectively. The consumption of pulses and green leafy vegetables was less than RDI in all age groups in both the sexes.

The intake of other vegetables, though was better than that of green leafy vegetables in all the age groups in both the sexes, was still lower than the RDI. The elderly males consumed higher than the suggested level of (50 g) of roots and tubers in all age groups. Mean intakes of sugar \& Jaggery for males and females were 25 g and 21 g respectively.

3.2.2 Nutrients

The mean and median intakes of nutrients, calculated for three age groups and sexes, are presented in Tables 5 \& 6 and are compared with RDI values suggested by the Expert Committee of ICMR ${ }^{4.5}(1990)$ (Fig.2).

The mean and median intakes of protein were slightly less than the RDI in both the sexes. The intakes were higher in the younger age group (60-69 years) than in the other age groups, in both the sexes, though it was statistically significant only in females ($p<0.01$). The intakes among non-elderly adults were higher than the elderly adults. The median energy intakes of males (2080 Kcal) and females (1689) were less than the RDI. (RDI for energy among elderly was calculated according to their body weights). The mean intakes of energy, which were in marginally higher than the medians for male and females were 2167 and 1764 kcal. The mean intakes decreased with increasing age. The consumption of iron in both the sexes was lower than the RDI. The average consumption of calcium was, however more than the RDI $(400 \mathrm{mg})$ in both the sexes.

The intake of vitamin A was below the RDI ($600 \mu \mathrm{~g}$) in all age groups. The median intake was more in males ($168 \mu \mathrm{~g}$) than females ($137 \mu \mathrm{~g}$). The intakes increased with increasing age among the males. The median intake of thiamin was marginally lower than the RDI (Males: 1.2 mg and females: 1.0 mg). In the case of non-elderly adults the intakes were more than the elderly (males: 1.4 mg and females: 1.2 mg). The consumption was more among younger age groups of the elderly in both the sexes.

The consumption of riboflavin was less than the RDI in all three age groups. Mean intakes were significantly different between ages in females ($p<0.05$). The riboflavin intake among non-elderly adults was comparable with the elderly in both the sexes. The mean intake of vitamin C was more than the recommended level of 40 mg for males (46 mg), while it was comparable in females (39 mg), in each age group. The median intakes were, however, less than RDI.

(Кер/חכ ләd) SıNヨI\&

$\pm \checkmark$	S．0	100	10	S0	$\angle 0$	$\varepsilon 0$	10	60	L1	10	$\angle 0$	$1 \cdot 2$	S．9	onte \pm		
$\begin{aligned} & \text { 加 } \\ & \mathrm{sZ} \end{aligned}$	$\begin{aligned} & \forall L \\ & \varepsilon L \end{aligned}$	$\begin{aligned} & 861 \\ & 26 \end{aligned}$	$\begin{gathered} 1 Z \\ \square \end{gathered}$	$\begin{aligned} & 0 G \\ & O Z \end{aligned}$	$\begin{aligned} & 6 \mathrm{~S} \\ & 92 \end{aligned}$	$\begin{aligned} & \hline Z \nabla \\ & 12 \end{aligned}$	$\begin{aligned} & \text { 8L } \\ & \text { ZS } \end{aligned}$	$\begin{aligned} & O L \\ & O S \end{aligned}$	$\begin{aligned} & 2 b \\ & \angle t \end{aligned}$	$\begin{aligned} & \angle \varepsilon \\ & 1 \varepsilon \end{aligned}$	$\begin{aligned} & 261 \\ & \angle O 1 \end{aligned}$	$\begin{aligned} & 10 Z \\ & 8 \varepsilon \varepsilon \end{aligned}$	$\begin{aligned} & 891 \\ & \text { Stt } \end{aligned}$	OS ueaw	セモも	pelood
$\begin{aligned} & \hline 0 L \\ & \nabla S \end{aligned}$	L OL	†1	$\begin{aligned} & L \\ & Z \end{aligned}$	97	LZ	O2	$\begin{aligned} & 28 \\ & 09 \end{aligned}$	$\begin{aligned} & 65 \\ & 8 t \end{aligned}$	$\begin{aligned} & \not \nabla 8 \\ & 0 \varepsilon \end{aligned}$	$\begin{aligned} & 9 \varepsilon \\ & 82 \end{aligned}$	$\begin{gathered} 0 \varepsilon 1 \\ Z 8 \end{gathered}$	$\begin{aligned} & \varepsilon \angle L \\ & \varepsilon \varsigma 乙 \end{aligned}$	$\begin{aligned} & l \varepsilon \downarrow \\ & \varsigma \varepsilon \varepsilon \end{aligned}$	$\begin{aligned} & \text { OS } \\ & \text { ueaw } \end{aligned}$	てZ	082
$\begin{aligned} & \angle Z \\ & 9 Z \end{aligned}$	$\begin{aligned} & \hline 11 \\ & \varepsilon L \end{aligned}$	$\begin{aligned} & \text { ZLI } \\ & \text { Z6 } \end{aligned}$	$\begin{gathered} \tau 乙 \\ \vdots \end{gathered}$	$\begin{aligned} & \angle S \\ & \square Z \end{aligned}$	$\begin{aligned} & Z S \\ & O E \end{aligned}$	$\begin{aligned} & 9 \mathcal{S G} \\ & \varepsilon 乙 \end{aligned}$	$\begin{aligned} & \varepsilon 9 \\ & \triangleright s \end{aligned}$	$\begin{aligned} & \angle S \\ & 6 D \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \end{aligned}$	$\begin{aligned} & \hline 0 \nabla \\ & 1 \varepsilon \end{aligned}$	$\begin{gathered} \varepsilon \angle 1 \\ Z 6 \end{gathered}$	$\begin{aligned} & \hline S O Z \\ & \angle \emptyset \varepsilon \end{aligned}$	$\begin{aligned} & 6 G 1 \\ & 6 \varepsilon b \end{aligned}$	$\begin{gathered} \text { OS } \\ \text { ueaw } \end{gathered}$	001	6L－0L
$\begin{aligned} & \mathrm{s} 乙 \\ & \text { 乙乙 } \end{aligned}$	$\begin{aligned} & \text { SL } \\ & \varepsilon L \end{aligned}$	$\begin{gathered} \text { 乙乙乙 } \\ 16 \end{gathered}$	$\begin{aligned} & \llcorner Z \\ & \varepsilon \end{aligned}$	20 81	¢9 cz	$\begin{aligned} & \angle \varepsilon \\ & 0 Z \end{aligned}$	$\begin{aligned} & \text { E8 } \\ & \text { LS } \end{aligned}$	$\begin{aligned} & \forall L \\ & 6 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 8 E \\ & \angle 1 \end{aligned}$	$\begin{aligned} & \angle \varepsilon \\ & L \varepsilon \end{aligned}$	$\begin{aligned} & Z O Z \\ & \text { ELL } \end{aligned}$	$\begin{aligned} & 00 Z \\ & \text { 乙ナE } \end{aligned}$	$\begin{aligned} & 0 \angle L \\ & \varsigma \varsigma t \end{aligned}$	OS ueaw	ZLE	69－09
Maб6er 8 se6ns	S！10 8 s7e」		spoos पรəj」 ЈечłО	पS！$]$	Stuns	spàs 1108 sfnN	$\begin{gathered} \text { suagnl } \\ 8 \\ \text { szooy } \end{gathered}$	$\begin{aligned} & \text {-6ә^ } \\ & \text { ләчłO } \end{aligned}$	－6อ＾ Kıeaา นวอ」	sasjnd	รมว1！	slearas	STOIIW 8 sieanaj		N	$\begin{gathered} \text { (sieal) } \\ \text { oб } \forall \end{gathered}$

6.	$\pm{ }^{*} \downarrow$	$\varepsilon 0$	$\varepsilon て$	90	12	10	$\varepsilon て$	10	LZ	O！Pe」 1		
でO\％	$1 \cdot 9$	90	LO	でGZt	い	LSG	969	97	て2	OS		
5ε	をてし	60	1	891	㲸	でっ	0802	$\angle Z$	てS	ue！pew	ャEb	pelood
97	¢ ¢ ا	0.1	でし	レレع	92	6¢9	L912	£	99	ueaw		
¢ 81	$\varepsilon \varepsilon$	90	$\checkmark 0$	8¢L	\＆1	08\％	LE8	81	－	OS		
$\varepsilon \varepsilon$	10	80	60	LZZ	02	とてヵ	612l	GZ	st	ue！pew	¿2	082
09	ZOL	60	$0 \cdot 1$	0レヵ	$\varepsilon 乙$	± 69	0981	82	St	ueaw		
$\varepsilon \cdot L \varepsilon$	\checkmark ¢	G\％	290	$\varepsilon \underbrace{\text { c }} 88$	01	0 Ot	899	92	12	OS		
て£	916	1	1	$8 \angle 1$	$\varepsilon 乙$	65	$\square \angle L Z$	82	ゅS	ue！pew	001	6L－0L
てt	0 ¢ 1	$0 \cdot 1$	でし	L0E	G2	699	6912	¢ع	99	ueaw		
$1 \cdot 2 \varepsilon$	て＇9	90	80	$96 \angle \varepsilon$	21	L89	269	92	$\varepsilon 乙$	as		
Lع	9 Zl	1	\downarrow	191	ャて	20t	6702	92	てs	ue！pew	てLE	69－09
98	6 61	$0 \cdot 1$	$\varepsilon \cdot$	908	LZ	†¢¢	$\angle 812$	£	$\angle 9$	ueaw		
（6w）	（6m）	（6u）	（6w）	（6त）	（6u）	（6u）	（реэ⿳亠丷厂犬）	（6）	（6）			（siead）
\bigcirc ¢ umexn	U！כセ！	u！ィецоя！¢	и！шв！	$\forall 3!\Lambda$	404	un！jej	Кблаиヨ	3ef 1etol	u！pyodd		N	26\％

9ε	8WNN
 STVחGIAIGNI NI SヨYVINI INヨIUINN ONV OOO」	
 SINEIZINN SONヨY \perp ヨWI ヨY甘INI INヨIUIINN ONV OOO』	

3.2.3 Distribution of Nutrient Intake by per cent of RDI

Distributions of individuals according to intake of major nutrients as per cent of RDI are presented in Table 7.

About 65% elderly population consumed more than the RDI of energy. The percentage consuming more than RDI were slightly more among the males (71\%) than in females (60%). The corresponding figures for the non-elderly adults were 52% and 64% respectively. It may be noted that while the RDI of elderly is based on actual weights. A negligible proportion of elderly (1.4\%) consumed energy below 50% of RDI. The consumption of protein was less than 50% of RDI in about 2% of the elderly. As in the other age groups, the micronutrient intakes were inadequate.

The intake of vitamin A was very unsatisfactory. In about 59\%, the intakes were less than 30% of RDI, while only 13% consumed more than the RDI. The intakes of riboflavin were more than RDI in only 11% of individuals, while 5.2% were consuming $<30 \%$ RDI (Table 7). About 16% consumed less than 50% of RDI of thiamin. In about 38% the intakes were more than RDI.

Table 7 DISTRIBUTION OF ELDERLY ACCORDING TO NUTRIENT INTAKES BY PERCENT OF RDI

Nutrient	Year	<50	50-60	60-70	70-80	80-90	90-100	2100	χ^{2}
Energy	1975-79	3.6	5.6	7.9	9.4	10.4	9.9	53.1	37.40***
	1996-97	1.4	2.8	5.6	6.3	8.8	10.3	64.8	
Protein	1975-79	2.8	4.4	5.7	7.8	8.0	6.6	65.4	14.46*
	1996-97	1.5	3.1	3.7	5.2	7.7	8.2	70.5	
Thiamin	1975-79	21.4	5.8	5.4	4.9	5.2	5.9	51.3	$73.24{ }^{\text {*** }}$
	1996-97	15.8	10.1	10.0	9.8	8.9	7.8	37.6	
Niacin	1975-79	18.1	12.1	10.0	11.3	8.4	7.2	32.9	26.62***
	1996-97	14.1	10.1	12.4	12.0	9.7	8.5	31.3	

Nutrient	Year	<30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	≥ 100	χ^{2}
Calcium	1975-79	8.3	5.7	9.7	9.4	7.5	6.4	5.6	6.1	41.4	18.21*
	1996-97	7.5	4.6	7.2	6.1	7.3	7.6	5.7	5.3	48.8	
Iron	1975-79	3.4	7.3	12.4	14.1	10.5	9.3	8.0	5.9	29.0	28.47***
	1996-97	3.6	6.3	10.4	10.5	15.7	12.1	9.5	8.1	23.6	
Vit. A	1975-79	70.4	7.7	4.0	2.8	2.2	1.7	1.5	0.7	9.0	29.0***
	1996-97	58.6	10.4	6.3	4.1	2.5	2.1	2.1	1.5	12.5	
Riboflavin	1975-79	16.7	14.6	16.7	13.9	10.3	7.2	5.1	3.7	11.9	139.53***
	1996-97	5.2	5.7	24.4	12.5	12.1	13.6	7.5	8.1	10.8	
Vit. C	1975-79	31.1	4.8	7.0	6.5	6.5	6.6	4.3	2.6	30.5	50.23***
	1996-97	20.0	4.8	6.0	4.7	7.2	5.7	6.5	5.5	39.7	

* $p<0.05 ;$ *** $p<0.001$

3.2.4 Protein Calorie adequacy status

- The protein and energy requirement curves are assumed to follow gaussian distribution, with a coefficient of variation of 15%. The ICMR Expert Committee suggested mean requirements of energy for different ages, whereas in the case of protein, the RDI corresponded to Mean $+2 S D$ of actual requirements. The

Individuals with less than Mean - 2 SD of requirements of energy/protein were categorized as energy/protein inadequate.

Protein-Calorie adequacy status was observed in a large proportion of elderly (Male: 90%; Female: 82%). As the age advanced the inadequacy status also increased in both the sexes.

3.3 NUTRITIONAL STATUS

The mean, median and SDs of anthropometric measurements according to age, sex and period of survey are presented in Tables 8 to 10. The mean heights of elderly decreased in both the sexes, as the age advanced. However, such a trend was noticed only among males.

The nutritional status of the elderly was assessed based on Body Mass Index (BMI). It is the ratio of weight in kgs, and square of height in meters. The mean BMI was higher in the younger age group of males, while in the case of females it was higher in the older age group. The elderly were grouped into different nutritional grades using James ${ }^{6-8}$ Classification, was given below.

BMI	Nutritional Grade
<16.0	III degree CED
$16.0-17.0$	II degree CED
$17.0-18.5$	I degree CED
$18.5-20.0$	Low normal
$20.0-25.0$	Normal
$25.0-30.0$	I degree obesity
>30.0	II degree obesity

Table 8 ANTHROPOMETRIC MEASUREMENTS OF MALES BY AGE AND PERIOD OF SURVEY

YEAR	$\begin{gathered} \text { AGE } \\ \text { (Years) } \end{gathered}$	N		HEIGHT (Cms)	$\begin{gathered} \hline \text { WEIGHT } \\ \text { (Kgs) } \\ \hline \end{gathered}$	BMI
1975-79	60-69	1516	Mean Median SD	$\begin{aligned} & 161.8 \\ & 162.0 \\ & 6.65 \end{aligned}$	$\begin{aligned} & 47.5 \\ & 46.3 \\ & 8.53 \end{aligned}$	$\begin{aligned} & 18.1 \\ & 17.7 \\ & 2.89 \end{aligned}$
	70-79	516	Mean Median SD	$\begin{gathered} 160.8 \\ 160.6 \\ 6.73 \end{gathered}$	$\begin{aligned} & 46.5 \\ & 44.8 \\ & 9.26 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 17.5 \\ & 3.08 \end{aligned}$
	≥ 80	124	Mean Median SD	$\begin{aligned} & 160.3 \\ & 160.2 \\ & 7.46 \end{aligned}$	$\begin{aligned} & 47.1 \\ & 46.4 \\ & 8.21 \end{aligned}$	$\begin{aligned} & 18.3 \\ & 18.1 \\ & 2.80 \end{aligned}$
1996-97	60-69	1325	Mean Median SD	$\begin{gathered} 160.7 \\ 161.0 \\ 6.60 \end{gathered}$	$\begin{aligned} & 48.4 \\ & 47.0 \\ & 8.94 \end{aligned}$	$\begin{aligned} & 18.7 \\ & 18.3 \\ & 3.00 \end{aligned}$
	70-79	444	Mean Median SD	$\begin{aligned} & \hline 160.1 \\ & 160.2 \\ & 6.64 \end{aligned}$	$\begin{aligned} & \hline 47.6 \\ & 46.4 \\ & 8.91 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.6 \\ & 18.2 \\ & 3.16 \end{aligned}$
	≥ 80	104	Mean Median SD	$\begin{gathered} 158.2 \\ 158.8 \\ 7.21 \end{gathered}$	$\begin{aligned} & \hline 46.3 \\ & 45.4 \\ & 8.64 \end{aligned}$	$\begin{aligned} & 18.4 \\ & 18.4 \\ & 3.08 \end{aligned}$
NNMB				38		rly Nutrit

Table 9 ANTHROPOMETRIC MEASUREMENTS OF FEMALES BY AGE GROUPS AND PERIOD OF SURVEY

YEAR	$\begin{gathered} \text { AGE } \\ \text { (Years) } \end{gathered}$	N		$\begin{gathered} \hline \text { HEIGHT } \\ (\mathrm{cms}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { WEIGHT } \\ (\mathrm{kgs}) \\ \hline \end{gathered}$	BMI
1975-79	60-69	1094	Mean Median SD	$\begin{gathered} 147.3 \\ 147.0 \\ 6.08 \end{gathered}$	$\begin{aligned} & 39.5 \\ & 38.0 \\ & 8.05 \end{aligned}$	$\begin{aligned} & 18.2 \\ & 17.5 \\ & 3.33 \end{aligned}$
	70-79	343	Mean Median SD	$\begin{gathered} 146.2 \\ 146.0 \\ 6.41 \end{gathered}$	$\begin{aligned} & \hline 38.0 \\ & 36.3 \\ & 7.35 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.7 \\ & 17.2 \\ & 3.03 \\ & \hline \end{aligned}$
	≥ 80	66	Mean Median SD	$\begin{gathered} 146.0 \\ 146.6 \\ 6.42 \end{gathered}$	$\begin{aligned} & \hline 37.4 \\ & 36.5 \\ & 7.09 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.5 \\ & 17.6 \\ & 2.91 \end{aligned}$
1996-97	60-69	1295	Mean Median SD	$\begin{gathered} 148.3 \\ 148.2 \\ 6.13 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 42.8 \\ & 41.2 \\ & 8.61 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.4 \\ & 18.6 \\ & 3.65 \\ & \hline \end{aligned}$
	70-79	390	Mean Median SD	$\begin{gathered} 147.3 \\ 147.0 \\ 6.12 \end{gathered}$	$\begin{aligned} & 41.5 \\ & 40.2 \\ & 8.44 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 18.3 \\ & 3.65 \end{aligned}$
	≥ 80	88	Mean Median SD	$\begin{gathered} 146.1 \\ 146.6 \\ 6.99 \end{gathered}$	$\begin{aligned} & \hline 41.7 \\ & 40.0 \\ & 8.12 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 18.8 \\ & 3.69 \end{aligned}$

The prevalence of Chronic Energy Deficiency (CED) (BMI <18.5) was relatively more among males (53.5\%) than in females (49.4\%). It was observed that the proportion of CED increased with increasing age among males, while it was the lowest among the females of 80 years and above. This may be due to the common observation that, in general, BMI is higher in females than males. The prevalence of obesity (BMI > 25.0) was 4.2% in males, and 7.7% in females (Table-10 \& Fig.3a, $3 b \& 4 a, 4 b)$.

In the case of non-elderly adults, the prevalence of CED was lower than the elderly in both the sexes (Males: 44.2\%; Females: 46.8\%).

Table 10 DISTRIBUTION (\%) OF ELDERLY BY AGE AND SEX ACCORDING TO BMI

Age (Years)	<18.5	Male $18.5-25.0$	≥ 25.0	<18.5	Female $18.5-25.0$	≥ 25.0
$60-69$	53.2	42.7	4.1	48.7	43.4	7.9
$70-79$	53.4	42.1	4.5	52.3	41.3	6.4
≥ 80	57.7	38.5	3.8	48.3	42.5	9.2
Pooled	53.5	42.3	4.2	49.4	42.9	7.7
Non-elderly $(18-59 y r s)$	44.2	51.8	4.0	46.8	47.3	5.9

Males: $\chi^{2}=0.96(\mathrm{NS})$; Females: $\chi^{2}=2.34(\mathrm{NS})$

Fig. 3
PREVALENCE (\%) OF CHRONIC ENERGY DEFICIENCY AMONG ELDERLY
BY AGE

Fig. 4
DISTRIBUTION (\%) OF ELDERLY \& NON ELDERLY ACCORDING TO BMI BY YEAR OF SURVEY

4. TIME TRENDS IN FOOD AND NUTRIENT INTAKES

The average intakes of different foods are presented in Tables 11 \& 12. The mean intakes of all foodstuffs were higher in 1996-97 than those of 1975-79, except with respect to pulses in case of males and females and roots \& tubers among females. The intakes of GLV, millets, fish and foods continued to be negligible at both points of time.

The median intakes of nutrients among the elderly were higher in 1996-97 than those of 1975-79 except with respect to thiamin in both the sexes. (Table13 \& 14). The medians of most of the nutrients, except iron and niacin were statistically significantly different between periods ($\mathrm{p}<0.05$).

A comparison between the two periods revealed that the extent of CED declined from about 62.3% in 1975-79 to 53.5% in 1996-97 among the males and from 63.8% to 49.4% among the females. There was a concomitant increasing trend in the proportion of normal, overweight / obesity between 1975-79 and 1996-97 (Table 15).

Table 11 MEAN INTAKE OF FOOD STUFFS (g/day) AMONG ELDERLY BY AGE AND PERIOD OF SURVEY - MALES
иопи！

91	12	． 99	$\varepsilon 0$	． 6.4	－\quad－8	．\square°＇9	でદ	200	$0 \cdot 1$	$\varepsilon 0$	．．．${ }^{\text {¢ }} 91$	．．．＇St	10		$\begin{array}{r} \text { spourad } \\ \text { чәәмұәд } \end{array}$	ppla 10 ，
$\varepsilon 0$	60	で0	10	¢ 0	$\varepsilon 0$	10	60	9.	02	62	62	．\downarrow	－ 201	sabe	บәәмрәя	solyey ，in
02	El	02	\checkmark	91	$L 2$	St	15	Lb	St	1ε	201	198	£9b	OSOt	L6－9661	
92	Ot	$\angle 9$	9	8	1	8	OS	$\angle b$	1	1ε	8\＆	992	EOb	080t	6L－SL6L	－uon
12	11	εL	2	61	てZ	91	$6{ }^{6}$	96	Sl	$\angle 2$	99	162	L¢E	88t	L6－9661	
81	L	¢¢	\checkmark	8	\downarrow	L	$8{ }^{8}$	06	1	0ε	してし	0 Oz	L¢E	9bt	6L－SL6L	
61	8	62	1	$\varepsilon \downarrow$	ゅて	St	6ε	99	s	12	ャะ	152	982	てb	L6－9661	
t	L	加	1	9	11	9	08	ts	L	61	821	LLL	S0E	0ε	6L－SL6L	
乙2	11	02	乙	02	ャて	81	加	し	12	ャて	加	$8 L 2$	てZ६	して1	L6－966t	
21	8	15	ε	6	$\varepsilon 1$	G	$8{ }^{8}$	$\angle \square$	い	82	66	$9 \varepsilon 乙$	S\＆દ	001	6L－S 26 L	6
02	21	εL	ε	61	12	St	19	$2 t$	－	82	$L L$	108	8L£	¢てを	L6－966L	
61	8	LS	\square	8	1	8	St	9ε	1	て६	821	£ ℓ	198	91ε	6L－SL6t	69－09
$\begin{array}{\|c\|} \hline \text { Kaб6er } \\ 8 \\ \text { jefns } \\ \hline \end{array}$	$\begin{gathered} \text { s!!0 } \\ 8 \\ \text { sie] } \end{gathered}$	$\begin{aligned} & \text { pood } \\ & \text { y!uw } \\ & 8 \text { y!lw } \end{aligned}$		4S！${ }^{\text {d }}$	Stundy	$\begin{gathered} \hline \text { S!!O } \\ 8 \\ \operatorname{sinN} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { sjaqn } 1 \\ 8 \\ \text { stooy } \\ \hline \end{array}$	$\begin{gathered} \text { 6әл } \\ \text { دәчו० } \end{gathered}$	＇бәл Куеә чәә10	sasjnd	รไวl！w	s¢гอлวう	$\begin{array}{\|c\|} \hline \text { şall!w } \\ 8 \\ \text { s!eadej } \end{array}$	N	dead	$\begin{gathered} (\text { (sid }) \\ \text { o6 } \mathrm{f} \end{gathered}$

uопицпn	иәрヲ						St						g／NA
$\varepsilon 9$	8＇ε	． 2 ＇ 0	${ }^{-1} \mathrm{O}$	\checkmark ¢	Li	500	L2	． 69	800			spoyad чәэмэя	Kıəpla $10 \pm$
$\checkmark 0$	\downarrow \％	10	$1 \cdot 2$	$0 \cdot 1$	くて	で0	91	$\varepsilon 0$	8.2		saбe uәamıg		somey ．s．
$9{ }^{9}$	9\％1	$1 \cdot$	$\downarrow \cdot$	Oち¢	0ε	ELS	LZSZ	ャ¢	¢9	ueaw	ELLE	26－9661	$\begin{aligned} & \hline(65-81) \\ & \kappa_{1 \mu 2 p 10} \\ & \text {-UoN } \\ & \hline \end{aligned}$
しt	0．91	60	91	LLZ	$\downarrow \varepsilon$	06S	£ャてz	$\angle 2$	29	ueaw	เZ6E	6L－SL6L	
$\begin{aligned} & 9 \varepsilon \\ & 9 b \end{aligned}$	$\varepsilon \zeta \downarrow$ $\mathrm{c} \varepsilon \downarrow$	6.0 0.1	0.1 21	891 レレE	¢乙	$\begin{aligned} & \text { 2t } \\ & 695 \end{aligned}$	$\begin{aligned} & 0802 \\ & \angle 912 \end{aligned}$	$\begin{aligned} & L Z \\ & \varepsilon \varepsilon \end{aligned}$	$\begin{aligned} & \text { Zs } \\ & 9 \mathrm{~S} \end{aligned}$	ue！paw ueaw	\downarrow ャャ	L6－966	pajood
92	611	10	て＇ı	$1 \varepsilon \downarrow$	$\varepsilon 乙$	GLE	とャ8！	61	OS	ue！paw			
8ε	9 EL	80	－1	$9 \angle Z$	LZ	6bs	£¢61	gz	的	ueaw	でロ	6L－GL61	
$\varepsilon \varepsilon$	101	80	60	LZZ	02	とても	612l	GZ	St	ue！paw			082
09	zor	60	0.1	01ヵ	$\varepsilon 乙$	¢69	0981	82	st	veaw	乙て	26－966	
21	6 ZL	10	$\varepsilon \cdot$	1てし	12	816	ع081	12	$8{ }^{8}$	ue！paw	92	6L－S 661	
$\downarrow \varepsilon$	8 \％	60	$\mathrm{S} \cdot$	622	Lz	S99	8961	92	$\dagger 5$	ueaw	ง	62－s26	
2\＆	8 \％	$0 \cdot 1$	$0 \cdot 1$	LLL	$\varepsilon 乙$	6 St	1くL2	で82	${ }^{\text {b }}$	Ue！pen	001	L6－9661	6L－02
で	0 EL	0.1	でし	L0E	¢z	699	6912	¢ ε	95	uean		26－960	
92	6.01	60	$0 \cdot 1$	8 L	22	08E	2921	02	90	ue！pow			
じ	L＇2L	80	$\varepsilon \cdot$	892	sz	$\square \angle G$	9281	gz	OS	ueaw	OLl	62－s26	
$\angle \varepsilon$	8 \％	60	$0 \cdot 1$	191	ャて	ZOD	6702	92	ZS	ue！paw	Z1E	26－966	69－09
96	6 6L	0：	$\varepsilon \cdot$	908	$\angle 2$	†S	L8L2	£	Ls	ueaw			
92	とてよ	10	$\varepsilon!$	て¢！	ャて	$\checkmark<\varepsilon$	6881	61	ZS	ue！paw ueaw	$9<2$	6L－GL6L	
8ε	8\＆し	80	S ＇1	£ 82	$8 乙$	8¢¢	2861	gz	95				
（6ш）	（6m）		（6u）	（6n）	（6u）	（6u）							（＇sul）
	u！כe！	－oq！y	и！ие！！			unives	к6ләuэ	［ełol	u！리잉		N	Je2入	－6\％

$1 \cdot 1$	$\varepsilon \cdot 乙$	$L L$	$6 \varepsilon 1$	12	0%	L1	61.	88	0.1		spouad Uววмıag		$\begin{gathered} \text { 人papje 101 } \\ \text { solpy ..t. } \end{gathered}$
$\varepsilon \cdot 0$	LS	$\varepsilon \cdot \square$	1．t	81	L	6.0	・で	91	86		sə6e иәамıəg		
\downarrow	て＇と1	6.0	でし	20¢	92	ILS	SGIZ	0ε	SS	ueaw	OSOb	L6－966	（65－81）
S ε	$0 \cdot \varepsilon 1$	80	$\varepsilon \cdot 1$	$\downarrow \downarrow$－	52	967	Lヤ81	8ε	15	Ueaw	080t	6L－9261	Kıəpio－uon
1ε	2.01	80	80	LEL	61	1／LE	L991	てZ	で	ue!pəw	887	L6－966	
6ε	6.01	80	0\％	$1 \angle Z$	LZ	9Sb	七9 21	LZ	97	ueวw	88	26－966	
$\varepsilon 乙$	6.6	90	$0 \cdot 1$	としょ	61	91 ¢	ESSL	91	で	ue!pəw	9ヤワ	6L－SL6L	
て£	S11	10	で1	SてZ	てZ	6で	8ヤ91	12	$9 \downarrow$	ueaw	9	62－526	
$\varepsilon \varepsilon$	6.8	$\angle 0$	\llcorner	LEL	L1	¢عะ	9とカレ	02	$L \varepsilon$	ue!pow	てヤ	L6－9661	
¢	8.8	10	8.0	9L1	LI	8で	くカカレ	$\varepsilon 乙$	LE	ueaw	Z	26	8
$\downarrow \mathcal{L}$	$\varepsilon \cdot 8$	50	80	LL	SI	8レて	てくで	St	$\varepsilon \varepsilon$	ue！paw	0ε	6L－S 261	
6ε	96	90	11	8S1	61	85¢	¢とヤ1	81	8ε	ueวw	○と	6L－g26L	
$L Z$	76	$\angle 0$	10	9ヶb	81	18 L	$\downarrow \square$ ¢	ZZ	0¢	ue！paw	121	L6－9661	
0ヶ	$\rightarrow 01$	8.0	6.0	LZE	O2	6Sヶ	6ャ91	Lて	$\varepsilon \triangleright$	ueวw	Lて，	26－966	－0L
七乙	て＇6	90	6.0	1Еし	81	OLE	ととャレ	91	8ε	ue！paw	OOL	6L－SL6L	2－0
$\downarrow \varepsilon$	9.11	10	12	602	12	10ヶ	ヤLSL	$\downarrow 2$	$\square \square$	ueaw	00	62－526L	
て\＆	8.01	80	8.0	SEL	02	68ε	E8Lb	$\varepsilon 乙$	カ	u8！paw	¢ ¢	L6－966	
6ε	$\varepsilon \downarrow 1$	80	01	て3乙	て乙	6¢ヶ	$\angle \triangleright 81$	82	87	ueวw	ऽટદ	26－966	
$\varepsilon 乙$	EOL	90	$0 \cdot 1$	でL	02	8ても	8191	91	56	ue！paw	91E	6L－SL6L	5
1ε	911	10	$て ゙ 1$	LE乙	$\varepsilon 乙$	七七刀	1691	12	$\angle \square$	uعวw	918	6LSL6L	
$\begin{aligned} & \text { (бu) } \\ & כ \cdot \pi!\Lambda \end{aligned}$	（6w） u！Je！n	（бس） U！ле！ －0q！y	（6u） บ！ய －E！प1	$\begin{aligned} & (6 H) \\ & \forall \because!\Lambda \end{aligned}$	（6u） uㅣㅣ	（6u） un！э甲еร	（Іеэ्र） KБләиヨ	（6） $7 \mathrm{P}!$ 1elol	（6） u！əəold		N	182人	$\begin{aligned} & (\cdot s 1 \lambda) \\ & 25 \forall \end{aligned}$

$(S N) \downarrow \varepsilon \cdot Z={ }_{2}^{\chi}$			（SN）$\varepsilon S^{\circ} L={ }_{2}^{\chi}$				
69	$\varepsilon \cdot L \square$	89p	67	6.96	でしS		sopemad
$L \angle$	6で	767	0%	でて\＆	8 89	pejood	
で6	¢で	$\varepsilon 8 \%$	6.	$1 \angle 2$	0.12	08 ＜	
$\downarrow 9$	としゃ		0 O	て＇0¢	8.99	6L－0	
6 L	\downarrow カ	L．8b	S＇b	L®E	$\varepsilon て 9$	69－09	
（SN）$\varepsilon 6 \cdot 9={ }_{2} \chi$			（SN） $96.0=z^{\chi}$				
0.7	815	でカワ	61	888	$\varepsilon \triangleright ¢$	রидәp｜ə－u0N	solew
でゅ	$\varepsilon て ゙$	c．ES	92	で乌\＆	$\varepsilon \cdot 79$	pejood	
8 8	S．88	LLS	bi	カても	で99	$08<$	
9.	しで	\downarrow †¢	ç	$て ゙ ゆ ¢$	£ 29	6L－0L	
1.	くで	て¢¢	でて	$0 \cdot 9 \varepsilon$	8.29	69－09	
0.962	$0.52-5.86$	c＇8b＞	0．92z	0＇cz－c＇81	S．817	26 \downarrow	Xas
L6－9661 IWg			6L－9L6LIW8				

5. EFFECT OF SOCIO-ECONOMIC STATUS

5.1 BODY MASS INDEX

A comparison of the prevalence of CED (BMI <18.5) among elderly males and females between the two periods indicates that there was evidence of reduction in the prevalence in 1996-97 as compared to 1975-79 among the elderly belonging to SC + ST communities, illiterates, those living in kutcha houses and among landless (Table-16). The distribution of the individuals according to BMI is presented in the (Tables 17 to 22). The proportion of CED (BMI: < 18.5) was much higher among the elderly belonging to SC+ST communities (64.6\%), than other communities (36.5\%) (Table-17). On the other extreme the extent of overweight was much higher in others (7.1\%) than among the SC+ST (2.6%). There were no differences in grade III CED between nuclear and joint families (16.6\%). (Table-18). CED was higher in illiterates (57.3\%) than among the literates (41\%) (PO.001) (Table-19).

There was an association between BMI and family size ($\mathrm{p}<0.05$), though the differences were small. The prevalence of CED with III degree was more among the larger families (18.1\%), where the mean family size was seven and above than smaller families (15.4\%) ($\mathrm{P}<0.05$) (Table-20). The extent of CED was higher among the elderly living Kutcha houses (60.0\%) was almost twice as those residing in pucca houses (35%). The proportion of normal (13.1%) was also similarly higher in pucca houses than those living in other types of houses $(p<0.05)$ (Table-21).

As expected, the elderly of the labourers families were at a disadvantage with higher prevalence of CED as compared to agriculturist's (52\%) and Others (47\%) ($p<0.001$) (Table-22). The prevalence of CED was highest (53.4\%) among the elderly belonging to the households who had no land. The extent of CED was the lowest among individuals who had owned more than 10 acres ($\mathrm{p}<0.001$) (Table-23).

Table 16 PREVALENCE (\%) OF CED (BMI < 18.5) AMONG ELDERLY ACCORDING TO HOUSEHOLD SOCIOECONOMIC CHARACTERISTIC AND PERIOD OF SURVEY - SEXES POOLED

Household Particulars	Percent of BMI < 18.5	
	$1975-79$	$1996-97$
SC\&ST	75.7	64.6
Head of Household Illiterate	63.5	57.3
Family Size >7	53.0	53.0
Type of House 'Kutcha'	68.2	59.8
Head of Household Labourers	60.5	60.6
Head of Household Landless	72.1	53.4
NNMB	48	Elderly Nutrition

Table 17 DISTRIBUTION (\%) OF ELDERLY BY BMI AND COMMUNITY

Community	BMI					
	<16	$16-17$	$17-18.5$	$18.5-20$	$20-25$	≥ 25
SC + ST	20.4	16.9	27.3	18.7	18.1	2.6
Others	15.4	10.6	20.5	18.1	28.3	7.1

$$
\chi^{2}=118.56 ; P<0.001
$$

Table 18 DISTRIBUTION (\%) OF ELDERLY BY BMI AND TYPE OF FAMILY

Type of family	BMI					
	<16	$16-17$	$17-18.5$	$18.5-20$	$20-25$	≥ 25
Nuclear	16.6	12.5	21.8	17.7	25.2	6.0
Joint	16.6	11.8	23.6	17.9	24.5	5.6

$$
\chi^{2}=1.84 ; \mathrm{P}<0.05
$$

Table 19 DISTRIBUTION (\%) OF ELDERLY BY BMI AND LITERACY STATUS

Literacy Status	BMI					
	<16	$16-17$	$17-18.5$	$18.5-20$	$20-25$	≥ 25
Illiterates	19.4	13.2	24.7	18.5	20.2	4.0
Literates	12.1	10.7	18.2	16.3	33.4	9.2

$$
\chi^{2}=146.1 ; \mathrm{P}<0.001
$$

Table 20 DISTRIBUTION (\%) OF ELDERLY BY BMI AND FAMILY SIZE

Family Size	BMI					
	<16	$16-17$	$17-18.5$	$18.5-20$	$20-25$	≥ 25
≤ 4	15.4	11.7	23.7	18.2	24.5	6.5
$5-6$	16.4	10.4	23.4	16.9	26.6	6.4
≥ 7	18.1	14.4	20.5	18.0	24.0	4.9

$$
x^{2}=21.1 ; P<0.05
$$

Table 21 DISTRIBUTION (\%) OF ELDERLY BY BMI AND TYPE OF HOUSE

Type of House	BMI					
	<16	$16-17$	$17-18.5$	$18.5-20$	$20-25$	≥ 25
Kutcha	20.0	14.5	25.3	18.2	18.5	3.5
Semi pucca	13.8	10.3	20.9	18.0	30.2	6.8
Pucca	11.7	8.6	14.4	14.8	37.4	13.1

$$
\chi^{2}=199.5 ; \mathrm{P}<0.001
$$

Table 22 DISTRIBUTION (\%) OF ELDERLY BY BMI AND OCCUPATION

Occupation	BMI					
	<16	$16-17$	$17-18.5$	$18.5-20$	$20-25$	225
Labourers	21.4	13.6	25.6	18.6	18.8	2.0
Agriculture	16.6	12.6	22.8	19.4	23.6	5.0
Others	14.9	11.4	20.6	15.6	29.0	8.4

$\chi^{2}=80.9 ; P<0.001$
Table 23 DISTRIBUTION (\%) OF ELDERLY BY BMI AND LAND HOLDING

Total Land	BMI					
	<16	$16-17$	$17-18.5$	$18.5-20$	$20-25$	≥ 25
No land	17.4	11.6	24.4	16.8	24.1	5.8
$0.01-5$ acres	16.3	13.3	22.3	18.1	24.5	5.5
$5-10$ acres	15.3	11.8	22.9	20.6	24.4	5.0
≥ 10 acres	17.8	10.9	12.3	16.7	33.0	9.4

$$
\chi^{2}=35.5 ; P<0.01
$$

TIME TRENDS

NUTRITIONAL STATUS

ANTHROPOMETRY

- 54% of males and 49% of females had CED (BMI <18.5), white about 42% of males and 43% of females were normal
- The extent of CED declined from 63\% in 1975-79 to 53\% in 1996-97

5.2 FOOD INTAKES

The average daily intakes of various foods and nutrients were compared according to socio economic parameters, such as community, type of house, type of family, occupation of head of HH and landholdings, the results are presented in Tables 24-30.

5.2.1 Community

The consumption of most of the food stuffs, except cereals \& millets and GLV, was lower among elderly of SC \& ST community ($\mathrm{P}<0.05$) (Table 24).

5.2.2 Type of Family

The average intakes of majority of foods were comparable among the elderly of nuclear families and those from the joint families (Table 25).

5.2.3 Type of house

The type of house is considered as an index of socio economic status. The current intakes of almost all the food stuffs were higher among the elderly who were staying in pucca type of houses except for cereals \& millets (448 g) and GLV (20 g)
(Table 26). The consumption of mean food stuffs, except pulses, other vegetables and roots \& tubers and fats \& oils were different between type of houses in all the foods ($\mathrm{p}<0.05$)

5.2.4 Land holdings

The consumption of pulses, other vegetables, milk \& milk products, fats \& oils and sugar \& jaggery was higher among the households, which had more than 10 acres of land. Significant differences were observed between the elderly of the households with different sizes of land holdings with respect to cereals, pulses, nuts \& oil seeds, fish and milk and milk products ($\mathrm{p}<0.05$) (Table 27).

5.2.5 Occupation

The consumption of all food stuffs, except cereals \& millets (433 g) and GLV (23 g), was lower among the labourers compared to those who were engaged in agriculture and services. The mean intakes of majority foods except fruits, other flesh foods and sugar \& jaggery were significantly different between occupational groups ($p<0.05$) (Table 28).

5.2.6 Family size

The consumption of cereals \& millets (436 g) and pulses (36 g) was higher among the elderly living in households with family size 7 or more compared to small families (≤ 4 members). However the consumption of milk and milk products was higher among small families (Table 29).

5.2.7 Literacy Status

Literacy of the head of the household seems to play an important part in determining food intakes. Among the illiterates the current consumption of cereals \& millets (421 g), and GLV (17 g) was higher. However, among the illiterates the consumption of milk, fish and other flesh foods, fruits, other vegetables and nuts and oil seeds was lower than those of literate. It was also observed that the mean intakes of all the foods except GLV, other flesh foods and sugar \& jaggery were significantly and positively associated with educational status of the head of the household ($p<0.05$) (Table 30).

＊＊	1×0	${ }_{* * *} \nabla^{*}$ 沉	＊＊＊${ }^{\text {co }}$	${ }_{\text {\％＊＊}}+6$ ¢	＊＊＊し		ガレ	ガ0	${ }_{* *}+\cdots$	0＇1			O！̣ed 」
97	てし	991	6	6ε	St	¢ ε	ZS	GG	L	0ε	£ટદ	GZL	eoond
97	てし	06	乙	乙Z	OZ	92	GG	67	$\varepsilon 1$	92	†98	09ε	eoond －！！ m S
61	Zし	εG	乙	ル	乙て	L	†	LS	OZ	0ع	8tt	L\＆カ	eчวŋn¢
রıə66er 8 ıe6ns	$\begin{gathered} \mathrm{Sl!O} \\ 8 \mathrm{Slie} \end{gathered}$		spoog цรəコ」ə૫ヤО	पS！」	」	$\begin{gathered} \text { spəәs } \\ \text { I!O } 8 \\ \text { słnN } \end{gathered}$		$\begin{aligned} & \text { ‘бәл } \\ & \text { ィәчłО } \end{aligned}$	－бəィ Кృеәา иәәд	sosınd	sృеәəว	N	$\begin{aligned} & \text { əsnoh } \\ & \text { fo } \begin{array}{l} \text { ƏdK」 } \end{array} \end{aligned}$

$1000>\mathrm{d}_{* *}$

＊＊ 1 ＇1	$0 \cdot 0$	で0	$1 \cdot 乙$	ガレ	$1 \cdot 乙$	6.2	S＇0	ع0\％ 0	$\varepsilon \cdot 0$	80	$1 \cdot 0$		O！ְed
GZ	てし	S8	†	91	$0 Z$	Sl	$\angle \nabla$	0 S	ャレ	0ε	968	1®乙	łu！̣or
てZ	てレ	08	乙	02	97	61	LS	LS	91	87	66ε	169	деәэnN
রıəБ6ег 8小e6̂ns	$\begin{gathered} \text { s!!o } \\ 8 \mathrm{stre} \end{gathered}$		spoo－ પsəઇ」」əપҢ	4S！－」	¢	spəәs I！ 18 $\mathrm{s} \ddagger \mathrm{n} \mathrm{N}$	$\begin{gathered} \text { sıəqnł } \\ 8 \\ \text { słooy } \end{gathered}$	$\begin{aligned} & \text { •бәл } \\ & \text { ィәчłо } \end{aligned}$	－ถә＾ Кјеәา นәəఎ	${ }_{\text {sesjnd }}$	ऽ｜еəдəう	N	K！ ృ๐ әdイ」

$100^{\circ} 0>\mathrm{d}_{* * *} \cdot 10^{\circ} 0>\mathrm{d}_{* *}$

${ }_{* *} 9$	で0	\ldots	80	＊＊${ }^{\text {c }}$	8＇	＊＊＊	${ }_{* *} \dagger$ ¢	ガレ	${ }_{* *} \varepsilon^{\prime} \varepsilon$	S＇0	$\ldots{ }^{*}{ }^{\prime}$		
SZ	て1	G6	ε	七乙	92	$\varepsilon 乙$	9 S	εG	$\varepsilon 1$	82	ع8¢	\＆S9	S．ə૫łО
81	てし	0 S	†	8	61	L	LE	97	£乙	62	9\＆ャ	692	1S＋JS
Kıб6もе ュeธ̊ำ	$\begin{gathered} \mathrm{sllo} \\ 8 \mathrm{Slie} \end{gathered}$	$\begin{aligned} & \text { pood } \\ & \text { yו!!w } \\ & 8 \text { צו!! } \end{aligned}$	spool પsəコ 」əЧłО	4s！${ }^{\text {I }}$	¢	$\begin{aligned} & \text { spəәs } \\ & \text { I!O } 8 \\ & \text { sinn } \end{aligned}$	$\begin{gathered} \text { s.əqnł } \\ 8 \\ \text { słooy } \end{gathered}$	$\begin{gathered} \text { ‘бәл } \\ \text { ләчłО } \end{gathered}$	－ Бә＾ Кјеәา นәəఎ	$\operatorname{ses}^{\text {¢ }}$ d	s｜еəдəう	N	Kı！unumoכ

53
ио！и！ипn К К

0＇1	＊L＇ε	＊＊＊8＇8	$1 \cdot 1$	－9\％${ }^{\text {\％}}$	ε^{\prime}＇	．．． 698	L＇t	＊＊0 0	＊8＇ε	＊＊＊$\varepsilon^{\prime} 9$	${ }_{* * *}{ }^{\circ} 6$ \％		O！̣eג \pm
七乙	て1	88	乙	1ε	97	62	09	09	て1	0ε	8†¢	298	
$\varepsilon 乙$	\＆1	$\angle 6$	\dagger	$\varepsilon 1$	92	い	$9+$	$\angle t$	Sl	1ε	0¢t	t98	sıənoqe7
61	カ＇6	H	乙	OL	$\angle 1$	い	てヵ	－	$\varepsilon 乙$	12	\＆\downarrow	961	uo！pednooo
$\begin{gathered} \text { রıә66एer } \\ 8 \\ \text { 土e6ns } \end{gathered}$	S！！ 8 8iey	$\begin{aligned} & \text { poodd } \\ & \text { yו!w } \\ & \text { 8y!! } \end{aligned}$	spool 4sə｜」 ґə૫Ң	4S！${ }^{\text {¢ }}$	S！！nuy	$\begin{aligned} & \text { spəəS } \\ & 1!O 8 \\ & \text { Sın } \end{aligned}$	$\begin{gathered} \text { sıəgnt } \\ 8 \\ \text { słooy } \end{gathered}$		$\begin{aligned} & \text { 'бә } \wedge \\ & \kappa_{\text {јеә }} \end{aligned}$ иәәə	$\operatorname{sessin}_{\text {d }}$	งรอләว	N	（รə๗э）

$100 \cdot 0>\mathrm{d}_{* * *}$ 〔（SO $0>\mathrm{d}_{*}$

$1 \cdot 乙$	$\varepsilon \cdot 1$	${ }^{\circ} 9^{\circ} \varepsilon$	8.1	．．．9＇8	LO	$\ldots \ldots 9$	S＇L	t＇レ	$1 \cdot 1$	$\ldots{ }^{\text {．．．} 6}{ }^{\circ}$	＊ $2 \cdot \varepsilon$		O！̣ed 」
62	Sl	9Z1	乙	Sl	$\angle 1$	Sl	てt	19	80	てt	88ε	εL	OL
SZ	い	S8	0	1	$\varepsilon 乙$	G	6ε	七s	\＆	1ε	\＆0t	乙8	OL－S
七て	てl	98	\downarrow	SI	97	$\angle 1$	Gs	St	$\angle 1$	$8 乙$	くレナ	915	g －1
61	て1	s9	乙	82	$\varepsilon 乙$	$\varepsilon 乙$	67	$\varepsilon \varsigma$	91	sz	$8 \angle \varepsilon$	LSE	puel ON
		$\begin{aligned} & \text { poxd } \\ & \text { y!uw } \\ & \text { 8Y!!!w } \end{aligned}$	spoog дә૫łО	पs！」	¢！！n⿺𠃊	$\begin{aligned} & \text { spəəS } \\ & !!08 \\ & \text { sinn } \end{aligned}$	$\begin{gathered} \text { sıeqnł } \\ 8 \\ \text { słooy } \end{gathered}$	$\begin{aligned} & \text { ‘бәл } \\ & \text { ләчłО } \end{aligned}$		$\operatorname{sesin}^{\text {d }}$	яІеәдว	N	（รə๗ァ） pue기라이

		 Sח\＆$\forall \perp$ TVNOI\＆IU \cap NN pue JIWONOכヨ OIJOS									$100 \cdot 0>\mathrm{d}_{* * *}$ ¢ $10^{\circ} 0>\mathrm{d}_{* *}$ ¢ $\mathrm{SO}^{\circ} 0>\mathrm{d}_{*}$		
＊9＇9	00	＊＊＊	\downarrow ¢	．．．6＊88	$\square^{*} 01$		．${ }^{\text {c }}$＊	\ldots ．．．＇LZ	9 Z	． $\mathrm{S}^{\circ} \mathrm{L}$	．．．${ }^{\circ} \mathrm{\varepsilon}$ 亿		0！̣ed
97	て1	9S1	6	6ε	Gt	¢	zs	gs	L	0ε	\＆ఒะ	¢८ı	งәృе．е！
12	Z1	$\varepsilon 9$	乙	6	OZ	8	st	$\varepsilon \downarrow$	$\angle 1$	1ε	しても	¢09	sәұехә！！！！
$\begin{gathered} \text { Kıa66er } \\ 8 \\ \text { de6ns } \end{gathered}$	$\begin{gathered} 5!!0 \\ 8 s+e_{y} \end{gathered}$	$\begin{aligned} & \text { podd } \\ & \text { y!!!w } \\ & 8 y!! \end{aligned}$	spoo－ पร키빈 дәчъО	4s！${ }^{\text {¢ }}$	S！！nu	$\begin{aligned} & \text { spəos } \\ & 1!08 \\ & \text { sinn } \end{aligned}$	$\begin{gathered} \text { s.eqnł } \\ 8 \\ 8 \text { sıooy } \end{gathered}$	$\begin{gathered} \text { бәәл } \\ \text { дәчю } \end{gathered}$		${ }_{\text {sesInd }}$	ร¢еәлว	N	snleys रэенә！！า

Sกロナ

$100 \cdot 0>d_{* * *} \cdot 10^{\circ} 0>d_{* *}!90^{\circ} 0>d_{*}$

8.0	$\varepsilon \cdot 0$	$\pm \pm$	9.2	${ }_{\text {．}} \varepsilon^{\circ} \mathrm{G}$	9＇1	${ }_{*} \overbrace{}^{\prime} \mathrm{Sl}$	8.0	$9 \cdot 2$	O．1	${ }^{4} 6$	± 78		O！̣⿺𠃊
12	い	99	1	$\varepsilon 1$	61	01	ZS	$8+$	$\angle 1$	9ε	9\＆t	Lع乙	L＜
てZ	て1	16	\dagger	61	$\angle Z$	91	$\angle t$	$\angle t$	$\varepsilon 1$	$8 乙$	†8¢	ع0t	9－9
¢	て1	06	\dagger	sz	¢	$\angle 乙$	ャG	89	81	$\varepsilon 乙$	L8\＆	乙8乙	ヶ＞
$\begin{gathered} \text { Kıə66®er } \\ 8 \\ \text { נe6ns } \end{gathered}$	$\begin{gathered} \operatorname{s!!⿱} \\ 8 \mathrm{slf}_{4} \end{gathered}$	$\begin{aligned} & \text { poxd } \\ & \text { y!uw } \\ & \text { 8y!!!w } \end{aligned}$		4S！${ }^{\text {¢ }}$	צை	$\begin{aligned} & \text { spəəs } \\ & 1!08 \\ & \text { sinN } \end{aligned}$	$\begin{gathered} \text { s.eqnł } \\ 8 \\ \text { stooy } \end{gathered}$	$\begin{gathered} \text { 'бәл } \\ \text { ィәчł० } \end{gathered}$		$\operatorname{sessfn}_{\text {d }}$	ง｜eวлวง	N	əz！

ヨZIS 人ㄱוWVョ 人日（Кер／6）Sコヨก

5.3 NUTRIENT INTAKES

The average daily intakes of various nutrients according to socio-economic parameters were given in Tables 31-38.

5.3.1 Community

There were no perceptible differences in the nutrient intakes between the households of SC \& ST communities and others. The mean intakes of calcium, iron and riboflavin were higher in others than among SC \& ST ($\mathrm{p}<0.05$) (Table-31).

5.3.2 Type of family

The intakes of majority of nutrients, though were more among the nuclear families than those in joint families, were not significantly different between type of families ($\mathrm{p}>0.05$) (Table 32).

5.3.3 Type of House

The consumption of nutrients like energy, iron, vitamin A and niacin was surprisingly more among individuals who are staying in kutcha type of houses compared to those individuals who are staying in semi-pucca and pucca type of houses (Table 33).

5.3.4 Land holdings

The nutrient intakes were more among the individuals who had land holdings 10 acres and above (Table 4).

5.3.5 Occupation

It was observed that the consumption of all the nutrients except that of vitamin A and vitamin C was more among the individuals where the occupation of head of the households was agriculture. The intakes of a majority of nutrients, except vitamin A and vitamin C were significantly different ($\mathrm{P}<0.05$) between occupations (Table 35).

5.3.6 Family size

Surprisingly the consumption of nutrients like protein (53 g), energy (2025 Kcal), iron (25 mg) and niacin (13.1 mg) was more among the families with 7 or more members, compared to smaller families. This may be because of higher number of earning members. The mean intakes of calcium, iron, thiamin and vitamin ' C ' were statistically significant between different family size (Table 36).

5.3.7 Literacy

The mean intakes of majority nutrients except iron (24.1 mg), vitamin A (295 $\mu \mathrm{g}$), thiamin (1.1 mg) and niacin (12.1 mg) were more among literates than those among the illiterates. The mean intakes of protein, calcium, iron, thiamin, riboflavin, and vitamin 'C' were significant ($p<0.05$) by literacy status (Table 37).

5.3.8 Per capita Income

The consumption of most of the nutrients were more among the individuals who had per capita income of more than Rs. 3000 (Table 38).

Time trends in socio-economic status versus food and nutrient intakes and nutritional status are presented in Annexures 1-14.

Table 31 MEAN INTAKE OF NUTRIENTS (per day) BY COMMUNITY

Community	N	Protein (g)	Energy $($ Kcal $)$	Calcium (mg)	Iron (mg)	Vit. A $(\mu \mathrm{g})$	Thiamin (mg)	Ribofl- avin (mg)	Niacin (mg)	Vit.C (mg)
SC + ST	269	50	1962	424	24	325	1.13	0.8	12.1	41
Others	653	51	1949	538	23	275	1.08	0.9	12.1	43
F ratio		0.8	0.1	$12.2^{* * *}$	4.0^{*}	2.8	1.4	6.2^{*}	0.0	0.2

* $\mathrm{p}<0.05$; *** $\mathrm{p}<0.001$

Table 32 MEAN INTAKE OF NUTRIENTS (per day) BY TYPE OF FAMILY

Type of family	N	Protein (g)	Energy $($ Kcal $)$	Calcium (mg)	Iron (mg)	Vit.A $(\mu \mathrm{g})$	Thiamin (mg)	Ribofl- avin (mg)	Niacin (mg)	Vit.C (mg)
Nuclear	691	51	1957	514	24	296	1.1	0.9	12.1	43
Joint	231	51	1943	476	23	273	1.1	0.9	12.1	41
F ratio		0.0	0.1	1.2	0.8	0.5	0.2	0.1	0.0	0.7

Table 33 MEAN INTAKE OF NUTRIENTS (per day) BY TYPE OF HOUSE

Type of House	N	Protein (g)	Energy $($ Kcal)	Calcium (mg)	Iron (mg)	Vit. A $(\mu \mathrm{g})$	Thiamin (mg)	Ribofl- avin (mg)	Niacin (mg)	Vit.C (mg)
Kutcha	437	51	2023	476	25	320	1.1	1.0	12.4	43
Semi Pucca	360	50	1889	491	22	267	1.1	1.0	12.1	40
Pucca	125	52	1892	645	19	252	1.0	1.0	11.1	46
F ratio		0.4	4.4^{*}	$7.1^{* * *}$	$19.3^{* * *}$	2.3	7.4	$4.6^{* *}$	2.7	1.5

${ }^{*} \mathrm{p}<0.05 ;{ }^{* *} \mathrm{p}<0.01 ;{ }^{* * *} \mathrm{p}<0.001$

Table 34 MEAN INTAKE OF NUTRIENTS (per day) BY TOTAL LAND HOLDING

Total land holding $($ acres $)$	N	Protein (g)	Energy $($ Kcal $)$	Calcium (mg)	Iron (mg)	Vit.A $(\mu \mathrm{g})$	Thiamin (mg)	Ribofl- avin (mg)	Niacin (mg)	Vit.C (mg)
No land	351	49	1877	488	23	290	1.0	0.8	11.9	42
$1-5$	416	51	2014	520	24	304	1.1	0.9	12.2	43
$5-10$	82	49	1889	453	24	251	1.3	0.9	11.5	40
≥ 10	73	58	2041	553	26	254	1.5	1.0	13.5	40
F ratio		2.8^{*}	3.2^{*}	1.0	$4.5^{* *}$	0.3	$17.4^{* * *}$	4.3^{*}	2.2	$5.3^{* * *}$

*p <0.05;** $p<0.01$;*** $p<0.001$

Table 35 MEAN INTAKE OF NUTRIENTS (per day) BY OCCUPATION

Occupation	N	Protein (g)	Energy $($ Kcal $)$	Calcium (mg)	Iron (mg)	Vit. A $(\mu \mathrm{g})$	Thiamin (mg)	Ribofl- avin (mg)	Niacin (mg)	Vit.C (mg)
Labourers	196	48	1928	401	24	319	1.1	0.8	12.3	40
Agriculture	361	54	2051	552	25	300	1.3	1.0	12.8	41
Others	362	49	1869	513	21	264	1.0	0.9	11.4	45
F ratio		$7.1^{* * *}$	$6.8^{* * * *}$	$7.3^{* * *}$	$13.1^{* * *}$	1.3	$18.9^{* * *}$	$8.4^{* * *}$	$6.1^{* *}$	1.3

*p<0.05;**p<0.01;***p<0.001
Table 36 MEAN INTAKE OF NUTRIENTS (per day) BY FAMILY SIZE

Family Size	N	Protein (g)	Energy (Kcal)	Calcium (mg)	Iron (mg)	VitA $(\mu \mathrm{g})$	Thiamin (mg)	Ribofl- avin (mg)	Niacin (mg)	Vit.C (mg)
≤ 4	282	50	1973	528	23	309	1.0	0.9	12.0	47
$5-6$	403	49	1897	527	23	281	1.2	1.0	11.6	40
≥ 7	237	53	2025	439	25	283	1.2	0.8	13.1	41
F ratio		2.5	2.8	3.3^{*}	4.1^{*}	0.4	$7.9^{* * *}$	0.9	$5.7^{* *}$	$3.7^{* *}$

*p < 0.05; ** $p<0.01$;*** <0.001
Table 37 MEAN INTAKE OF NUTRIENTS (per day) BY LITERACY STATUS

Literacy Status	N	Protein (g)	Energy $($ Kcal $)$	Calcium (mg)	Iron (mg)	Vit. A $(\mu \mathrm{g})$	Thiamin (mg)	Ribofl- avin (mg)	Niacin (mg)	Vit.C (mg)
Illiterate	605	50	1944	452	24	295	1.1	0.9	12.1	39
Literate	317	52	1972	605	22	280	1.0	1.0	12.0	49
F ratio		4.2^{*}	2.0	$26.3^{* * *}$	4.6^{*}	0.2	$7.9^{* *}$	$10.6^{* * *}$	0.01	$16.2^{* *}$

* $p<0.05 ;{ }^{* *} p<0.01$;*** $p<0.001$

Table 38 MEAN INTAKE OF NUTRIENTS (per day) BY PERCAPITA INCOME

Per capita Income (Rs.)	N	Protein (g)	Energy $($ Kcal $)$	Calcium (mg)	Iron (mg)	VitA $(\mu \mathrm{g})$	Thiamin (mg)	Ribofl- avin (mg)	Niacin (mg)	Vit.C (mg)
≤ 1500	177	48	1941	441	25	402	1.1	0.8	12.0	48
$1500-3000$	263	49	1926	432	23	259	1.1	0.08	12.2	37
≥ 3000	482	52	1963	562	22	267	1.1	0.9	12.1	43
F ratio		3.5^{*}	0.3	8.9	5.7	7.9	0.2	7.8^{*}	0.1	$5.1^{* *}$

* $p<0.05 ;{ }^{* *} p<0.01 ; * * * p<0.001$

SOCIO ECONOMIC STATUS Vs. FOOD AND NUTRIENT INTAKE

- Higher intakes of cereals and GLV reported in SC \& ST communities.
- Higher intakes of income-elastic foods observed among HHs having more than 10 acres.
+ Intakes of Energy, Iron, Vitamin A and Niacin were more in households living in kutcha houses.
- Intakes of Protein, Energy, Iron and niacin were more in households with large family size.

6. CONCLUSIONS

The objective of the study was to assess the current diet and nutritional status of the elderly utilizing the data collected by NNMB during 1996-97 and to study the time trends since 1975-79. This information could perhaps be considered as the first large database on diet and nutritional status of the elderly in India.

The results of the study indicated that, the overall intake of various foods except cereals \& millets was less than RDI in males. Similarly, the average intake of all the nutrients except calcium, thiamin and Vitamin C was less than RDI.

The consumption of foods increased during 1996-97 except in pulses from that observed in 1975-79. The prevalence of CED decreased over the period, with a concomitant increase in the prevalence of overweight among males and females. There is however, a need to conduct comprehensive surveys including information on diet related chronic diseases and behavioral and psychosocial aspects, in addition to diet and nutritional status.
69
gWNN

カャ゙0	L＇．	てでし	．．． $90^{\circ} \mathrm{s}$	$80^{\circ} \mathrm{Z}$	．．．2で61	97^{\prime}	しでし	00%	εL^{\prime}＇z	$* * 69 * *$	て＇0		иәәмұәд	ouly－y
．．．とどャレ		60°	$\underset{* * *}{6 Z ' Z \varepsilon}$	\cdots	．．．． $21 . \downarrow$ g	Ls＇0	＊ $28 \cdot \downarrow$	29°	$89^{\circ} \mathrm{Z}$	$68^{\circ} \mathrm{L}$	＊$L^{\circ} \varepsilon$		әәміәя	
LZ	い	99	1	$\varepsilon \downarrow$	61	01	ZS	$8{ }^{\text {b }}$	$\angle 1$	9ε	$98 \downarrow$	L๕乙	L6－9661	L＜
乙て	6	¢9	乙	8	OL	†	6ε	け	91	1ε	10t	0で	6L－g 661	
乙て	Z1	16	เ	61	$\angle Z$	91	＜t	＜t	$\varepsilon \downarrow$	$8 乙$	ャ8¢	ع0t	26－9661	9－G
61	6	99	ε	9	ャレ	9	Z9	L	O1	£	L8\＆	018	6L－GL61	
SZ	Z1	06	†	¢Z	¢Z	$\angle 乙$	ャ¢	89	81	$\varepsilon 乙$	L8¢	282	L6－9661	t＞
81	O1	29	乙	Or	Or	Or	ャG	εt	$\varepsilon \downarrow$	£	188	LZt	6L－g 261	
		$\begin{aligned} & \text { pood } \\ & \text { yו!w } \\ & \text { zy!!!w } \end{aligned}$	spoof पรэ｜」 дәчю	4s！$\sqrt{ }$	¢！	spəəs $1!08$ $\operatorname{s} \ddagger \mathrm{n}$	$\begin{gathered} \text { s.agn } \perp \\ 8 \\ \text { sıooy } \end{gathered}$			${ }_{\text {sesInd }}$	$\begin{gathered} \text { słəl!!W } \\ 8 \\ \text { s\|eәлə刀 } \end{gathered}$	N	леə入	

$100^{\circ} 0>\mathrm{d}_{* * *}: 10^{\circ} 0>\mathrm{d}_{* *}$ ： $\mathrm{G} 0^{\circ} 0>\mathrm{d}_{*}$

＊68＇ε	＊＊＊＇で	Lて＇0	＊＊＊01\％6	＊+9 ＇t	OG＇$\angle \varepsilon$	${ }_{* * * S E * L ~}^{\text {L }}$	98.1	＊＊ $288^{\circ} \mathrm{O}$	＊ε L＇${ }^{\text {a }}$	${ }_{* * * 68.81}$	で0	sə！！！unumooиәәмұәa		o！ley－y
${ }_{* * * 9} 9$	＊＊＊91＇てZ	${ }_{* * * 6 S^{\prime} レ}$	06．	＊＊＊S＇tし	＊＊＊99・して	${ }_{* * * E 8}{ }^{\text {c }}$ ¢	＋0， 0	9ぐて	20＇1	100	660	＇sıК иәәмұәg		
sz	て1	S6	ε	†て	97	$\varepsilon 乙$	99	$\varepsilon \varsigma$	$\varepsilon \downarrow$	82	ع88	£¢9	26－9661	S．əut
02	OL	$\angle 9$	ε	8	Z1	6	\＆я	st	い	$\downarrow \varepsilon$	08ε	82 L	6L－GL61	
81	て1	0 S	\dagger	8	61	L	$\llcorner\varepsilon$	$9+$	$\varepsilon 乙$	62	9\＆t	692	L6－9661	
Z1	9	Gz	1	L	L	ε	8ε	け	61	$\varepsilon 乙$	8Lt	$0 \varepsilon 1$	6L－GL6L	1S＋0s
	$\begin{aligned} & \text { s!! } \\ & \vdots \\ & \text { steres } \end{aligned}$	$\begin{aligned} & \text { podd } \\ & \text { yIllw } \\ & \text { syllw } \end{aligned}$	spoof पร키빈 ๖๖૫Ю	4s！$\sqrt{ }$	¢		$\begin{gathered} \text { s.eqn } \\ 8 \\ \text { stooy } \end{gathered}$			ses｜nd		N	леә入	

ио！！！ипп N К

WN														
	． 51 ＇s	．．． $91 \times 8 \mathrm{C}$	\＆が 9		．．．69＇sz	．．．2で9tr	．．．8＇6	．．．เヤてを	とで	$8 \vdash^{\circ} \mathrm{E}$	．．． $0 \varepsilon \cdot L$			oupy－y
． 80 ＇\downarrow	ع9.01	．．．69 21	乙ع०	．．．．とて＇ナ9	．．．．${ }^{\text {či }} 8$	†G’ZLl ${ }_{* * *}$	100	． $00^{\circ} \mathrm{S}$	69＇レ	．．．でて	81×0	＇sı入 иәәмұәg		
$\angle 乙$	21	LHL	\downarrow	8ε	乙¢	$0{ }^{0}$	19	$\angle 9$	て1	ャて	¢c\＆	LLE	26－9661	әџృә！
†て	い	02	†		61	6	$\angle 9$	ャs	い	$\varepsilon \varepsilon$	08ε	SLZ	6L－g 661	
12	21	¢9	乙	6	02	8	${ }^{\text {St }}$	$\varepsilon \downarrow$	$\angle 1$	1ε	しても	509	L6－9661	әұе⿱亠䒑：！！！
91	8	99	乙	9	8	L	$8{ }^{8}$	6ε	$\varepsilon 1$	$\varepsilon \varepsilon$	88ε	£89	6L－GL6L	
	$\begin{gathered} \text { s!!o } \\ 8 \\ \text { ste } \end{gathered}$	$\begin{aligned} & \text { podd } \\ & \text { y!l!w } \\ & 8 y!!W \end{aligned}$	spoot पรəઇ｜ 」ə૫ヤ	4s！${ }^{\text {a }}$	S！！nu」	$\begin{aligned} & \text { spoəs } \\ & 1!O 8 \\ & \text { sinn } \end{aligned}$	$\begin{aligned} & \operatorname{sizqn} \perp^{8} \\ & 8 \\ & \text { słooy } \end{aligned}$			sosind		N	1е2入	sniens кэенә！！

Sกı $\forall \perp$ S ᄉOVY
$100 \cdot 0>\mathrm{d}_{* * *}!10 \cdot 0>\mathrm{d}_{* *}$ ！ $\mathrm{S} 0^{\circ} 0>\mathrm{d}_{*}$

7 0 0 0 0					$\begin{aligned} & \bar{त} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		
		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { N1 } \\ & \text { N̦ } \end{aligned}$	$\stackrel{\rightharpoonup}{\circ}$ $\stackrel{\rightharpoonup}{\circ}$ $\stackrel{\rightharpoonup}{0}$		$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\circ} \\ \dot{\phi} \\ \stackrel{\ominus}{0} \end{array}$		®
		$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\text { ¢ }}{ }$	N	$\stackrel{\text { 山 }}{\text { ¢ }}$		z
$\begin{array}{l\|l} \text { N } \\ \stackrel{\rightharpoonup}{N} & \dot{\rightharpoonup} \end{array}$	$\stackrel{\omega}{\omega}$	$\stackrel{\omega}{\underline{-}}$	$\stackrel{\text { ¢ }}{+}$	¢	$\underset{\infty}{\stackrel{\rightharpoonup}{\infty}}$	$\stackrel{\rightharpoonup}{\circ}$	
$\stackrel{\circ}{\mathrm{j}} \underset{\sim}{\stackrel{\sim}{\widetilde{*}}}$	$\stackrel{\sim}{*}$	$\stackrel{\omega}{\sim}$	N	¢	${ }_{\circ}^{\text {L }}$	${ }^{\circ}$	
$\begin{array}{l\|l} \stackrel{\rightharpoonup}{\mathcal{W}} & \stackrel{O}{\mathrm{O}} \end{array}$	v	\bullet	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\omega}$	N	ω	¢
	¢ M	¢	$\stackrel{\rightharpoonup}{6}$	$\stackrel{\text { A }}{ }$	$\xrightarrow{0}$	\pm	$\stackrel{\text { ¢ }}{\text { ¢ }}$
$\stackrel{\circ}{\stackrel{+}{+}} \stackrel{\stackrel{\rightharpoonup}{\square}}{\circ}$	¢	囬	O	E	－	O	$\frac{\vec{c}}{\frac{-1}{0}} \times \frac{\pi}{\omega}$
	ऊ	or	N	$\stackrel{\rightharpoonup}{\square}$	v	O	
	ज	ब	N	$\stackrel{\rightharpoonup}{\omega}$	N	－	䇾
$\begin{array}{c\|c} \stackrel{\rightharpoonup}{\omega} & \underset{\sim}{\circ} \\ \stackrel{\rightharpoonup}{i} & \stackrel{\rightharpoonup}{\sigma} \end{array}$	ω	or	N	\pm	\pm	∞	$\stackrel{7}{5}$
$\stackrel{\text { dic }}{\substack{\text { din }}}$	\circ	N	N	－	N	N	
$\begin{array}{l\|l} \stackrel{\rightharpoonup}{\infty} & \overrightarrow{0} \\ \overbrace{i} \\ i \end{array}$	$\stackrel{\rightharpoonup}{\mathrm{o}}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	8	앙	\％		另亭亳
$\stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\text { a }}$	$\stackrel{\rightharpoonup}{N}$	\bullet	$\stackrel{\rightharpoonup}{N}$	∞	
$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\sim}{0} \sim$	N	N	N	$\stackrel{\rightharpoonup}{\bullet}$		

ио！！！ıпп N Кィәррヨ

\％！	P寝											$100 \cdot 0>d \ldots . .10 \cdot 0>d \ldots!0^{\circ} 0>d$		
． $02 \times$	$200{ }^{\circ}$	200	200	． 2 ＇G	010	$68^{\prime} 8$	$9{ }^{\circ}$	$100{ }^{\circ}$	810	$69^{\circ} \mathrm{Z}$	．．${ }^{66} 8$	N！！		o！̣ey－y
じカ	．．．912\％	． 26.01	8t゙て	L0＇0	20＇81	29＇68	＋000	01＇ε	くヵし	てと＇t	800		иәәмұәя	
¢Z	Z1	98	\downarrow	91	0 O	St	$\angle \square$	OS	カ	0ε	968	1\＆乙	26－9661	
乙て	6	09	1	s	ャレ	G	$9 \downarrow$	st	て1	9ε	¢で	ャ8て	6L－g 661	
て乙	てし	08	て	02	92	61	19	19	91	82	668	169	L6－9661	ขəวn
$\angle 1$	6	19	ε	OL	01	6	\＆s	加	\＆1	1ε	998	† $\angle \mathrm{S}$	6L－g c 6l	Ieopn
$\begin{gathered} \text { мabber } \\ 8 \\ \text { 土éns } \end{gathered}$	$\begin{gathered} \text { sil! } \\ 8 \\ 8!4 \\ \text { spe } \end{gathered}$	$\begin{aligned} & \text { podd } \\ & \text { yו!\|w } \\ & \text { 8ו!!! } \end{aligned}$	spoof 4รəઇ ґə૫ヤ	4s！$\sqrt{ }$	¢	$\begin{aligned} & \text { späs } \\ & 1!08 \\ & \sin \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { s.jeqn } 1 \\ & 8 \\ & \text { stooy } \end{aligned}$			${\operatorname{səs}{ }^{\text {and }} \text { d }}^{\text {d }}$		N	леә入	

．Lでャ	．．8でャレ	．．．96．L乙	OS＇レ	．．．9＜ 92	．．．9ヶ゙く	．．．6t＇sZ	81.1	．．．21＊8	96.7	．．．68＇S	．．．10＇92			－
． 26.9	．．そでャレ	．+0.6	\＆で0	\ldots	．．．z＇ı9Z	． 79 \％ 8	110	69＇z	． $98 . \varepsilon$	$69^{\circ} \varepsilon$	． $\mathrm{t9}$ ¢	＇sth	иәәмəəg	
七乙	て1	88	乙	1ε	97	62	09	09	てレ	0ε	8†を	298	L6－9661	S．ə૫łО
02	O1	\＆L	†	6	81	OL	$6 \checkmark$	乙s	01	ャ¢	¢¢\＆	เgZ	6L－g＜61	
$\varepsilon 乙$	$\varepsilon \downarrow$	$\angle 6$	\downarrow	$\varepsilon \downarrow$	92	い	$9 \downarrow$	$\angle \downarrow$	st	1ε	0\＆t	t98	L6－9661	әมที่า！и6 6
12	9	68	乙	L	い	9	zs	$\varepsilon \downarrow$	$\varepsilon 1$	8ε	てOt	ع0t	6L－g 661	
61	ャ6	け	2	01	21	い	てt	L	$\varepsilon 乙$	12	\＆\＆t	961	L6－9661	s．ı．nnoqe
ャレ	9	92	1		†	8	19	$\angle \varepsilon$	カ	12	$\varepsilon 6 \varepsilon$	ヶ0Z	6L－g 661	
	$\begin{gathered} \text { s!! } \\ \substack{8 \\ \text { sién }} \end{gathered}$	$\begin{aligned} & \text { podd } \\ & \text { y!llw } \\ & \text { syll\| } \end{aligned}$	spoot पรશョ｜ дә૫ऐО	4s！	S！	$\begin{aligned} & \text { spəos } \\ & 1!O 8 \\ & \text { sinn } \end{aligned}$	$\begin{gathered} \text { s.eqn } \perp \\ 8 \\ \text { stooy } \end{gathered}$			${ }_{\text {sesind }}$		N	120人	uo！pednooo

NOI
gWNN
100．0＞d ．．．． $10 \cdot 0>\mathrm{d}_{\ldots}$ ！ $90^{\circ} 0>\mathrm{d}$

$98^{\circ} 0$	190	＊＊99\％	Sto	Lて＇し	69°	＊＊9＇9	\＆て＇0	ぐて		$\begin{array}{r} \hline \text { র!ииншшоэ } \\ \text { иәәмұәg } \end{array}$	oney－y
＊＊＊＊ 01	szo	${ }_{* * * \& \varepsilon}<$ L	$* * * t ' S 1$	Lヵ¢	$\varepsilon 6.1$	200	${ }_{* * *} 8^{\text {8 }}$ 81	$0{ }^{\circ} \mathrm{L}$		иәәмұя	
$\varepsilon \downarrow$	1＇Zし	60	$1 \cdot 1$	GLZ	$\varepsilon 乙$	8¢¢	6761	19	£¢9	26－9661	ง．ə૫ヤO
¢	9\％L	80	$\varepsilon \cdot$	8 tz	¢z	$16 t$	2081	09	822	6L－GL6L	
H	1－2L	80	$1 \cdot 1$	¢८ع	ャて	ちても	2961	OS	692	L6－9661	$15+0$ S
ャ\＆	$0 \cdot \mathrm{~L}$	$\stackrel{0}{0}$	ع＇L	992	92	＋9\％	OGLL	\angle	0¢L	6L－GL6L	
$\begin{aligned} & (6 u) \\ & 0 भ! \end{aligned}$	（6m） U！כe！ N		$\begin{gathered} (6 \mathrm{f}) \\ \text { u!шe! } \end{gathered}$	$\begin{aligned} & \text { (6r) } \\ & \forall \because \mu \wedge \end{aligned}$	(6u) \|ג00	$\begin{gathered} \binom{\text { (6u) }}{\text { un!ə }} \end{gathered}$		（6） u！piodd	N	1е2入	

．．． $2 \downarrow$＇6	．．．286	．．．．s＇zl	ャ¢＇レ	セでS	．ド¢	．．．8192	＊98＇Z	$*$＊	$60^{\circ} 0$	．．．tでてし	$\ldots 2<{ }^{\text {．}}$	би！ррон риеา иәәмұәด		－1！ey－y
600	290	SL．	£8て	．．．9609		．．．1と 18	9く，	$8 \varepsilon^{\circ} 0$	01．	．．． 8981	60°		әәмұя	
62	¢	9 V	z	St	\angle	St	で	19	8	てt	888	\＆L	L6－966	OLく
乙¢	カ	915	τ	乙	6	ε	6ε	加	91	$9 \downarrow$	OLt	621	6L－9L61	
Gz	い	98	0	1	$\varepsilon 乙$	9	6ε	ャ¢	$\varepsilon \downarrow$	1ε	ع0t	28	L6－9661	OL－G
12	0	92	ε	9	てし	\downarrow	$\angle t$	St	ャレ	9ε	sot	L\＆	6L－9L61	
ャて	Z	98	เ	St	¢	4	¢9	$9+$	$\angle 1$	82	Lレt	91t	L6－9661	g－l
St	L	氻	z	21	い	カレ	19	$9+$	い	$\angle 2$	zLE	288	6L－GL61	
61	てし	99	乙	82	$\varepsilon 乙$	$\varepsilon 乙$	$6{ }^{6}$	\＆s	91	sz	82ε	L¢8	L6－966	puel ${ }_{\text {O }} \mathrm{N}$
91	8	$9+$	z	9	$\varepsilon \downarrow$	ε	てt	$0+$	て1	乙¢	$\varepsilon 8 \varepsilon$	012	6L－9L61	
	$\begin{gathered} \text { s!!o } \\ 8 \\ \text { stey } \end{gathered}$	$\begin{aligned} & \text { po.d } \\ & \text { yllw } \\ & \text { yillw } \end{aligned}$	 ఎə૫๐	पs！	¢	$\begin{aligned} & \text { spaəs } \\ & 1!08 \\ & \text { In } 8 \end{aligned}$	$\begin{gathered} \text { sıagn } \perp \\ 8 \\ \text { sıooy } \end{gathered}$	$\begin{gathered} \text { 'бә^ } \\ \text { ィәчł } \end{gathered}$		səsind		N	леə入	（รə๐ァ） pue기나이

											$100^{\circ} 0>\mathrm{d}_{* * *}: 100>\mathrm{d}_{* *}$
レ゙0	010	＊＊＊Lく8	280	$\varepsilon \varepsilon^{\circ} 0$	${ }_{* * * * E *}$	$99^{\circ} \varepsilon$	0S＇	0＜＇し			O！̣ey－」
＊＊＊68゙レ	＊＊S9＇9	${ }_{* * * 66 \%}$	${ }_{* * * 65 \%}{ }^{\circ}$	80 1	$* * * 6.15$	¢ $\iota^{\circ} \mathrm{E}$	＊＊＊90＊8	200	sıı久 иәәмıәя		
$9+$	トい	0．1	0．1	ZgZ	61	St9	Z681	Z9	GZレ	L6－9661	L
9ε	$\varepsilon \varepsilon \downarrow$	6.0	\downarrow－	292	GZ	16t	L161	$\varepsilon \varsigma$	てい	6L－GL6L	
$0+$	1＇Zし	$0 \cdot 1$	$1 \cdot 1$	$\angle 9 Z$	乙Z	167	6881	0 S	098	L6－9661	9－9
$\angle \varepsilon$	くてし	80	$\varepsilon \cdot$	เ92	†て	t6t	682l	0 S	897	6L－GL61	
$\varepsilon \downarrow$	†てし	$0 \cdot 1$	$1 \cdot 1$	0 O	SZ	9＜t	£ZOZ	19	L\＆t	L6－9661	\downarrow ¢
ャع	でてし	LO	$\varepsilon \cdot 1$	L£乙	9Z	8Lt	ZLLL	$6{ }^{+}$	$1 \angle t$	6L－SL61	
（6u）	（6u）	（6u）	（6u）	（6r）	（6u）	（6u）	（180う）	（6）	N	小eə入	əz！S ¢！！ux」
\bigcirc	u！®e！	u！＾ециоя！у	и！ше！	$\forall \because \wedge$	uo．｜	un！ove	イбıəиヨ	u！plodd	N	леә入	

L $\angle 1 \cdot \varepsilon$	． $81 \times \varepsilon$	$20 \cdot 1$	． $68{ }^{\circ} \varepsilon$	$89^{\circ} 0$	．． $96{ }^{\prime} \downarrow$	88°	68^{1}	$60{ }^{\circ}$		z！ K！！ue」 иәәмұәя	－uley－y
．．．89＇Sl	S1．1	．．．とて＇0¢	．．．09＇G々	1ε ¢	． $60 \cdot 9$	$81^{\circ} 0$	．．． 21.12	680		иәәмıәя	
しt	$1 \cdot \varepsilon \downarrow$	80	でし	£8乙	¢z	$68 \downarrow$	Gzoz	£я	L®乙	L6－9661	＜
$\varepsilon \varepsilon$	6．ZL	80	ガレ	L8乙	$\angle Z$	96t	¢ 881	19	してし	6L－GL6L	
Ot	91レ	$0 \cdot 1$	でし	182	£	LZG	L681	$6 \checkmark$	ع0t	L6－9661	9－G
¢	†てし	LO	$\varepsilon \cdot 1$	乙と乙	†て	9＜t	6LLL	67	018	6L－gL61	
$\angle \downarrow$	0 てし	60	$0 \cdot 1$	608	$\varepsilon 乙$	8 B	عL6।	0 S	Z8乙	L6－9661	$\dagger>$
9ε	†てし	80	$\varepsilon \cdot$	LSZ	$\dagger 乙$	26t	L6L1	09	LZt	6L－GL61	
	（6u） u！๒e！	（6u） и！ィеџюоя！у	（бш） и！ше！чь	（6r） $\forall!!\wedge$	$\begin{aligned} & \hline \text { (6س) } \\ & \text { uo, } \end{aligned}$	（6ш） un！ojeว		（6） u！려이d	N	лед入	əz！S

SL． 1	＊＊＊ 1 ¢ 6	＊＊ 2 C＇カレ	＊＊＊\＆゙レて	21＊0	＊＊＊＊0＇レレ	＊＊S6＊		${ }_{* * * * * ' S 1}$	uo！̣ednooo jo $\operatorname{sədК} \perp$ иәәмұәg		－upey－y
${ }_{* * * L}$ L＇EL	800	$* * * 29 \downarrow \varepsilon$	＊＊＊9t＇レて	＊90＇s	$80{ }^{\circ}$	soo	＊＊＊¢9．9z	99°		иәәмұәя	
st	カレ	6.0	$0 \cdot 1$	†92	12	ε ¢S	6981	$6 \downarrow$	298	L6－9661	s．ə૫łO
$\angle \varepsilon$	と＇zا	80	て＇し	692	†て	L8t	6 LL	6 t	เgz	6L－GL6L	
け	8てし	$0 \cdot 1$	$\varepsilon \cdot 1$	00ε	9z	ZS9	190Z	†G	198	L6－9661	
98		8.0	†＇レ	ャ¢Z	92	96t	L981	\＆ 9	ع0t	6L－gL61	
$0 t$	と＇Zし	80	$1 \cdot 1$	618	\dagger ¢	100	8261	$8{ }^{\text {r }}$	961	L6－9661	s．ə．noqe7
乙¢	じい	$L^{\circ} 0$	$1 \cdot 1$	912	$\varepsilon 乙$	69t	S691	St	toz	6L－GL61	
	$\begin{aligned} & \text { (6س) } \\ & \text { u!oe! } \end{aligned}$		$\begin{gathered} \text { (6ш) } \\ \text { u!шe! } \end{gathered}$	$\begin{gathered} (6 \mathrm{n}) \\ \forall \because!\wedge \end{gathered}$	（6u） uod	（бu） un！วァว		$\begin{gathered} \text { (6) } \\ \text { u!piold } \end{gathered}$	N	120人	uo！pednooo

6ヶ8	69＇t	$99^{\circ} \varepsilon$	．．69＇ 21	01\％	$91 \cdot \varepsilon$	．．．68＇92	ャs＇z	で・		S イоедә！！ иәәмұәя	－－
¢でャレ	69°	28．0t	＋0＇ $2 乙$	$8 \mathrm{~B}^{\text {² }}$	げく	$\varepsilon \varepsilon^{\prime}$	．．．90＇81	しでし	Sı久 иәәмıәя		
$6 \square$	0 OL	$0 \cdot 1$	$0 \cdot 1$	$08 乙$	乙て	909	2L61	Z9	LLE	L6－9661	әӊеәฆ！
$0 t$	8レ	80	でし	692	¢z	tts	1981	0 S	GLZ	6L－GL6L	
6ε	1－で	60	$1 \cdot 1$	962	ャて	てSt	カャ6し	09	S09	L6－9661	әешə！！！！
$\varepsilon \varepsilon$	8 Zl	8.0	ャ＇レ	$0 \vdash 2$	¢z	09t	8921	0 S	\＆89	6L－GL61	
（6u）	（6w）	（6w）	（6w）	（6r）	（6u）	（6w）	（⿺𠃊⿳亠二口欠彡）	（6）	N	1eə入	smıets イэexal！ 7
วํ！	บ！ロe！		и！ше！чь	$\forall!!\wedge$	uod	un！эอ	イбıәиョ	u！pyoud	N	小eə入	

${ }_{* *} 01 \cdot \mathrm{~S}$	＊＊L゙しレ		${ }_{* * *} 8^{\circ} \mathrm{SZ}$	S8＊0	${ }_{* * *} 996$	$\angle て ゙ て$	${ }_{* *} 26 . L$	${ }_{* * *} 69$ レレ		н pue？ иәәмұәд	－ل－
¢＊＊＊レレ	＊＊＊6\％	${ }_{*} 99$ ¢	${ }_{*}^{* *} 4 L^{\circ} 82$	$\varepsilon \varepsilon^{\circ} 0$	＊＊＊で91	8で0	\＆$\varepsilon \cdot 9$	$8 \varepsilon^{\prime} \varepsilon$		әәмұәя	
0t	S．ε	$0 \cdot 1$	G．	ヤ¢乙	97	\＆ऽऽ	レヤOZ	8 S	EL	L6－9661	OLく
$\bigcirc \mathcal{L}$	$\varepsilon \cdot ¢$	6.0	L＇L	レレE	62	カレS	OLOZ	69	6て1	6L－GL6L	
0t	Gレレ	6.0	$\varepsilon \cdot 1$	LGZ	ャて	\＆ऽt	6881	67	乙8	L6－9661	OL－G
9ε	くてし	8.0	S＇L	Z8Z	97	6Z9	7L81	\＆S	LEL	6L－GL6L	
$\varepsilon \dagger$	でで	6.0	1．1	ャ0ع	七乙	OZG	GLOZ	LS	91t	L6－9661	G－1
LE	ガレ	$\angle 0$	$1 \cdot 1$	عL乙	$\varepsilon 乙$	009	てعくレ	9t	28\＆	6L－GL6L	
てヵ	6．じ	80	$0 \cdot 1$	06Z	£乙	88t	LL81	67	LSE	L6－9661	puefon
1ε	9＊て	80	$\varepsilon \cdot \downarrow$	99Z	\downarrow ¢	LレV	ヤZくレ	67	OLZ	6L－GL6L	
	（6u） u！כe！	（6u） u！ィе｜ృOq！y	（6w） u！யモ！чப	$\begin{aligned} & \text { (6r) } \\ & \forall \cdot \mu! \end{aligned}$	$\begin{aligned} & \hline \text { (бw) } \\ & \text { uod } \end{aligned}$	(6m) un！эeว	（ןеэу） イбıәиョ	（6） u！porod	N	小eə入	$\begin{gathered} \text { 6u!̣\|OH } \\ \text { pueך } 10 \text { əz!s } \end{gathered}$

ZL｀0	． $99{ }^{\circ}$	$\angle 9^{\circ} \varepsilon$	．．9で01	LL＇0	． $29 \bigcirc$	100	$\ldots \downarrow$ ．+ ¢	${ }^{.} 00 \cdot \mathrm{G}$			oupey－」
${ }_{* * * Z 8 * 01}$	$\angle 9 . \varepsilon$	＊＊＊9t＇¢	$* * * 0^{\circ} \downarrow \varepsilon$	เS＊	9901	2000	ぐレ	2000		әмıәя	
け	1＇Zし	60	$1 \cdot 1$	$\varepsilon \angle Z$	$\varepsilon 乙$	9＜	\＆t6L	LS	เદ乙	L6－9661	¥ụos
$\downarrow \varepsilon$	¢ $¢ 1$	80	s．1	LLZ	$\angle 2$	915	0861	$\varepsilon \varsigma$	ャ82	6L－GL61	
$\varepsilon+$	1＇Zし	6.0	$1 \cdot 1$	962	ャて	trs	L961	IS	169	26－9661	леәэnN
9ε	0＇Zし	10	でし	$9 \varepsilon 乙$	$\varepsilon 乙$	ZLt	LZLL	$8{ }^{8}$	tLS	6L－GL6L	
$\begin{aligned} & (6 \mathrm{~m}) \\ & 07!~ \end{aligned}$	（6ш） u！or！		（бш） иішеІч	$\begin{gathered} (6 r) \\ \forall \because!\wedge \end{gathered}$	（6m） uo』1			$\begin{gathered} \text { (6) } \\ \text { u!əpoud } \end{gathered}$	N	лер	К！！шeฯ ¢о әdК」

7. REFERENCES

1. UN ACC-SCN, Nutrition \& Healthy Aging - SCN News, No. 19, 1999.
2. Editorial, 1999: The International year of the older persons. Journal of Indian Medical Association. 97, No.4, April 1999.
3. NNMB Second Repeat surveys - Rural (1996-97)
4. Expert group of Indian Council of Medical Research, Nutrient Requirements and Recommended Dietary Allowances for Indians, New Delhi: Indian Council of Medical Research, 1990.
5. National Institute of Nutrition, Dietary Guidelines for Indians. Hyderabad: National Institute of Nutrition, 1998.
6. James, W.P.T. Anna. Ferro Luzzi and Waterlow, J.C. Definition of chronic energy deficiency in adults. European J. Clin.Nutr. 1988,42:969.
7. Anthony, B.J., Nutritional Assessment of the Elderly. Cajanus. 1999, 32: 201-215.
8. Flegal, K.M., Trends in body weight and overweight in the U.S. Population. Nutrition Reviews, 1996, 54: S97-S100.

NATIONAL NUTRITION MONITORING BUREAU

REPORT ON
 FOOD \& NUTRIENT INTAKES OF INDIVIDUALS

K. VIJAYARAGHAVAN
N. BALAKRISHNA
GRACE MARIA ANTONY

CONTENTS

Page Nos
ACKNOWLEDGEMENTS
SUMMARY 67

1. INTRODUCTION 68
2. MATERIALS AND METHODS 68
2.1 Analysis 68
3. RESULTS 68-84
3.1 Sample 68
3.2 Food Intakes 69
3.3 Distribution of Intakes as Percent of RDI 72
4. TIME TRENDS 85-94
4.1 Food Consumption 85
4.2 Nutrient Consumption 87
5. COMMENTS 94
REFERENCES 95

ACKNOWLEDGEMENTS

We wish to convey our thanks to Dr.A.Laxmaiah, Dr R.Hari Kumar and Dr.M.Vishnuvardhana Rao, Senior Research Officers; Dr.N.Ariappa, Mr.Ch.Gal Reddy, Mr.K.Mallikharjuna Rao and Mr.B.Surya Prakasham, Research Officers; Mr.Sharad Kumar and Mr. M.Ravindranath, Technical Research Officers; Ms.M.Uma Nayak and Ms.K.Damayanthi, Nutritionists for their help during analysis.

We also thank Mr.P.Satish Babu, Mr.G.Govinda Rajulu, Ms.K. Shyamala, Ms.Vani Vijayaratnam, Ms.G.Madhavi and other staff for their technical help. Our thanks are also due to Mr. G. Hanumantha Rao and Ms. G. Prashanthi for their secretarial help.

SUMMARY

The report presents the results of the analysis of 24-hour dietary recall data on individuals of different ages, collected by the National Nutrition Monitoring Bureau. The current dietary status was assessed based on the data collected in 1996-97 as a part of second repeat survey in the same villages, which were visited in 1975-79. In addition, time trends in the food and nutrient intakes were assessed by comparing the above two sets of data, collected about two decades apart. The data of about 15100 individuals in 1996-97 and 17938 in 1975-79, belonging to different age, sex, physiological and physical activity groups formed the material of the analysis.

The results indicated that there was considerable variation in the intakes of both foods and nutrients, with a very high coefficient of variation, ranging from about 40% to more than 100\%. The variation was particularly high in the intakes of foods like millets, green leafy vegetables, other vegetables, milk and milk products and fats and oils. Even in the case of nutrients, the variation was high especially in the case of micronutrients, fat, and relatively to a lesser degree in the case of energy and protein. The median intakes of food and nutrients, in general, were below the RDI. There were no differences between the intakes of non-pregnant \& non-lactating (NPNL) females and pregnant women, despite the increased requirements due to pregnancy and lactation. About $30-40 \%$ of the individuals in different age groups had cereal intakes comparable to RDI. The children appeared to be worse off and about 10% had cereal-millet intakes less than half of RDI. About 83-90\% of individuals consumed less than 30\% of RDI of GLV.

About 13 to 55\% of individuals consumed energy more than or equal to RDI. Only about 11% of the population were consuming adequate amounts of Vitamin A, and $50-70 \%$ had intakes less than 30% of RDI. Iron consumption was inadequate in more than 90% of the individuals in almost all the age groups. There was an increase in the consumption of mean cereal intakes in all age groups in 1996-97, except in children of 1-3 years of age, as compared to those of 1975-79. The changes in the consumption of pulses and GLV were negligible (<5\% of 1975-79 intakes). Median test revealed that there were no significant differences, between the periods, in the intakes of energy, vitamin A and fat in 1-3 year old children. However, there was significant improvement in the intakes of the above nutrients in the other age groups. But, in the case of iron, there were significant changes only in the intakes of adult males, adult females (NPNL) and lactating women. These results, based on comparison of median intakes of individuals, are different from those reported earlier, which did not reveal any changes in the mean intakes of foods and nutrients of households

1. INTRODUCTION

The National Nutrition Monitoring Bureau (NNMB) has been continuously collecting information on diet and nutritional status of the communities in 10 States since the year 1972. Every year, the bureau collected information in selected households on dietary intakes at the household level using one-day weighment method, and of individuals of different ages by 24 -hour dietary recall method. While the results of household diet surveys have been reported in the annual reports of the NNMB, the information on individual intakes has not been regularly presented, particularly since the year 1988. In this report, the results of analysis of data on 24 hour recall diet survey, conducted in 8 States, to assess the dietary pattern of individuals of different ages and physiological groups obtained in 8 States are presented.

1.1 Objectives

i) To assess the current food and nutrient intakes of individuals of different physiological and age groups in the States surveyed.
ii) To assess the time trends, if any, in the dietary pattern, by comparing the data collected in 1996-97 on dietary status of individuals with that from the same villages which were surveyed during 1975-79.

2. MATERIALS AND METHODS

The current dietary status was assessed based on the data collected during 1996-97 as a part of second repeat survey ${ }^{1}$. This survey was carried out in the States of Andhra Pradesh, Gujarat, Karnataka, Kerala, Maharashtra, Orissa and Tamil Nadu. A total of 120 villages were selected for survey in each State, of which 90 were from those covered in 1975-79 and the remaining were new. In each village, 20 HHs were selected from which 10 were selected for diet survey. In five of these $10 \mathrm{HHs}, 24$-hour recall diet survey was done on all the members.

2.1 Analysis

The mean, median and SD were calculated for the data, collected as a part of second repeat survey. The data collected in 1975-79 were similarly analysed and compared with that collected in 1996-97 to assess time trends. Moving averages were calculated to pool data collected during 1988-1992.

Distribution of individuals of different age and sex groups according to food and nutrient intakes expressed as percentage of Recommended Dietary Intakes (RDI)2,3 was calculated.

3. RESULTS

3.1 Sample

The sample covered in different ages in different States according to the period of survey is presented in Table-1. During 1996-97, about 15094 individuals belonging to different age and physiological groups were surveyed, while 17938 individuals were covered during 1975-79.

Table 1 SAMPLE COVERAGE ACCORDING TO AGE, SEX AND PERIOD OF SURVEY

Age	Year of Survey	
	$1996-97$	$1975-79$
$1-3$ Pooled	1313	1764
$4-6$ Pooled	1336	2089
$7-9$ Pooled	1187	1859
$10-12$ boys	522	801
$10-12$ girls	524	725
$13-15$ boys	404	528
$13-15$ girls	435	462
$16-18$ boys	333	399
$16-18$ airls	361	393
Adult males	4147	4324
Adult females	3488	3559
NPNL	136	111
Pregnant	908	924
Lactating		
	15094	17938

COVERAGE		
DIET SURVEY	1975-79	$1996-97$
•	Households : 6497	6551
-	Individuals : 17,938	15,100

3.2 Food Intakes

The mean, SD and median of intakes of most of the foods were below the RDI levels (Tables-2 to 4). The coefficient of variation of all food intakes was very high. The median values were less than those of means.

Cereals (rice/wheat) were the staples in all the States surveyed. The mean intakes of millets ranged from about 31 g in 1-3 year old children to 120 g in adult males. The median intakes however revealed that less than 50% of the individuals were consuming millets. The intakes of protective foods like GLV, fruits, fats and oils, and milk and milk products were woefully inadequate in almost all the ages.

Table 2 FOOD INTAKES (g/day) BY AGE GROUPS

	Age Groups (Years)						
Food Stuffs		$1-3$		$4-6$		$7-9$	
	Mean	SD	Mean	SD	Mean	SD	
Millets	32	76.6	59	100.7	86	142.2	
Cereals	124	90.3	185	113.9	225	139.9	
Pulses	13	16.6	20	23.8	25	30.6	
GLV	5	19.6	10	38.1	12	41.6	
Other veaetables	14	29.7	25	39.1	30	48.3	
Roots and Tubers	17	31.6	29	90.1	32	46.1	
Nuts \& Oil seeds	3	11.3	6	15.3	8	21.6	

Table 2 FOOD INTAKES (g/day) BY AGE GROUPS (Contd..)

Age Groups (Years)							
Food Stuffs		$1-3$		$4-6$		$7-9$	
	Mean	SD	Mean	SD	Mean	SD	
Condiments \& spices	6	7.1	9	8.8	10	9.8	
Fruits	14	52.8	22	123.4	18	47.9	
Fish	4	25.7	6	21.9	8	28.3	
Other flesh Foods	2	11.2	2	12.3	2	12.5	
Milk \& Milk Products	67	110.5	60	104.4	53	86.0	
Fats	5	6.5	8	14.3	9	12.2	
Sugar \& Jaggery	14	25.2	16	23.4	17	20.9	

Table 3 FOOD INTAKES (g/day) BY AGE GROUPS

Table 4 FOOD INTAKES (g/day) BY AGE GROUPS

Food Stuffs										Adult males		Females (NPNL)		Pregnant Woman		Lactating Mothers	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD									
Millets	120	219.7	89	171.2	102	170.0	136	217.8									
Cereals	421	239.1	345	196.4	360	193.7	382	234.6									
Pulses	35	42.0	29	35.9	29	41.0	34	39.8									
GLV	17	47.9	16	45.9	17	60.1	11	36.7									
Other vegetables	54	74.9	49	66.7	42	59.7	42	65.6									
Roots and Tubers	56	73.9	53	75.7	34	40.1	42	112.1									
Nuts \& Oil seeds	17	36.8	17	31.3	11	26.3	9	22.6									
Condiments \& spices	17	19.0	14	14.4	15	13.7	18	21.4									
Fruits	31	164.6	24	98.7	26	48.3	34	179.8									
Fish	18	46.6	18	44.4	9	35.8	11	40.4									
Other flesh Foods	5	27.2	4	21.9	8	41.6	4	21.1									
Milk \& Milk Products	74	123.8	72	118.5	70	103.7	67	103.3									
Fats	15	17.5	13	15.1	12	12.3	13	13.4									
Sugar \& Jaggery	21	30.2	21	25.2	15	15.3	19	35.5									

NPNL : Non Pregnant \& Non Lactating

FOOD INTAKES OF INDIVIDUALS

- Intake of most of the food was below the RDI in all ages, except adults.
- Protective foods like GLV, fruits, fats and oils and milk and milk products were inadequate in almost all ages.
- Half of the individuals among different age groups the intake of pulses was grossly less than 30% of RDI.
- Pregnant and lactating women did not consume any additional quantities of foods over and above the NPNL.

3.2.1 Nutrient Intakes

The energy consumption among adults was comparable to RDI. Interestingly, in the case of females there was no difference between the intakes of non-pregnant \& non-lactating (NPNL) females and pregnant women despite the increased requirements due to pregnancy. (Tables- 5 to 7). Though, in general, the median nutrient intakes in all the age groups were below the RDI, these were particularly poor in the case of micronutrients like iron and vitamin A. It may be pointed out that food iron values have been revised and, as per these the median iron intakes were 50% of RDI, contrary to the earlier apparently normal intakes. In this report, iron intakes according to the old as well as revised values are presented.

Table 5 AVERAGE DAILY INTAKE OF NUTRIENTS BY AGE GROUP

Age Groups (Years)									
Nutrients	$1-3$			$4-6$			$7-9$		
	Mean	Median	SD	Mean	Median	SD	Mean	Median	SD
Protein (a)	22.4	20.4	11.3	31.4	29.4	12.9	38.5	36.2	15.7
Tot Fat (g)	13.5	10.1	11.4	17.6	13.9	15.3	19.6	15.1	15.2
Energy (Kcal)	867	815	370	1215	1154	424	1473	1418	480
Calcium (ma)	250	168	244	300	224	266	352	262	306
Iron (mg) - Old	9.4	8.4	5.4	14.3	12.9	7.5	18.2	16.4	8.9
Iron (mg) - New	5.5	4.3	4.4	8.4	6.9	5.6	10.8	8.7	7.5
Vit A ($\mu \mathrm{g})$	145	72	251	205	96	460	231	108	436
Thiamin (mg)	0.40	0.00	0.30	1.00	0.60	0.00	0.90	1.00	0.50
Ribo (mg)	0.40	0.00	0.30	1.00	0.50	0.00	0.70	1.00	0.30
Niacin (mg)	5.0	5.0	2.8	7.0	6.6	3.0	9.2	8.0	4.1
Vit C (mg)	16.5	10.0	22.1	25.0	17.5	32.0	28.6	20.0	31.9
Folic acid $(\mu \mathrm{g})$	44.6	37.0	33.9	65.0	55.1	41.0	79.0	66.0	52.5

NUTRIENT INTAKES OF INDIVIDUALS

- Median intake of all the nutrients in all the ages was below the RDI.
- Intakes were very poor in case of micronutrients like iron and vitamin A in all ages.
- 50% of individuals had protein calorie adequacy status.

3.3 Distribution of intakes as \% RDI

3.3.1 Foods

The distribution of individuals of different age and sex groups according to intakes of different foods expressed as percent RDI is presented in Tables $8 \& 9$ and proportion of Households consuming various foods below 70% of RDI are shown in Figs. $1 \& 2$. In general, about $30-40 \%$ of the individuals in different age groups consumed more than or equal to RDI of cereals. The proportion of individuals consuming more than RDI was higher among adult males and females, and also among those involved in moderate physical activity. The children however, appeared to be worse off, as about 10\% had poor intakes (<50\% of RDI) of cereals and millets. With respect to pulses, while the adults of both the sexes had adequate intakes, only $10-18 \%$ of children had intakes comparable to or more than RDI. The consumption of pulses was so poor that about 40-50\% of individuals in different groups consumed less than 30% of RDI of pulses. The consumption of GLV was woefully inadequate. The proportion of individuals of different age groups having adequate GLV intake varied from 5% in 1-3 years age group to 14% in adult males. The intakes among females were $4-5 \%$ of RDI. About 83-90\% of individuals consumed less than 30\% of RDI of GLV.

Fig. 1
PERCENT DISTRIBUTION OF INDIVIDUALS WITH CEREALS \& PULSES INTAKES BELOW 70\% OF RDI BY AGE GROUP \& SEX

Fig. 2
PERCENT DISTRIBUTION OF INDIVIDUALS WITH GLV AND MILK \& MILK PRODUCTS INTAKES BELOW 70\% OF RDI BY AGE GROUP \& SEX

LS	98	66	08	LOL	811	29	92	$\square 6$	19	98	101	εS	εL	98	6 S	92	Z6	（6r）p！oe ग！os
$9 \cdot \varepsilon \varepsilon$	toz	8.07	0006	て＇＜E	L＇9b	8.2ε	$2 \cdot 82$	－ 8 E	ع0t	0.12	8.28	$\angle 9 \varepsilon$	\dagger ¢ \dagger	S¢ ε	$0 \cdot \varepsilon$	$6 . \varepsilon z$	9.8ε	
0 S	6．15	9\％1	Z＇9	9＇$\varepsilon 1$	6.71	L＇t	901	SIL	$\checkmark \cdot \underline{ }$	9\％1	S＇Z	¢ ${ }^{\circ}$	$\varepsilon \% 6$	EOL	$6{ }^{6}$	ع＇OL	1し	（6u）u！כe！
060	08%	06.0	$05^{\circ} 0$	00\％	OL＇L	00°	020	$08^{\circ} 0$	$00^{\circ} 0$	08°	06.0	OEO	0＜0	OLO	050	0＜0	080	（6u）u！＾e｜foq！
020	06%	015	08.0	OL＇1	051	09°	06%	01\％	$0<0$	00\％	0て＇1	090	08%	001	090	06%	01：1	（6u）प！we！${ }^{\text {a }}$
SZE	Stb	8SZ	2011	¢81	92も	09ε	ع¢L	S92	197	8EL	SLZ	6Lb	トレレ	$\varepsilon ャ \square$	82t	LEL	912	
18	tol	でとし	8 Zl	L゙で	8．91	5＇8	$\varepsilon \cdot 01$	6．21	\＄6	S＇L	1ヵし		8.6	$0 \cdot て 1$	98	201	8 ZL	Man－（6w）uod
8.8	$L 12$	L¢	S＇Zl	L＇sz	0.62	26	8.02	s＇zて	901	－1．2	$8 \varepsilon 2$	L＇6	S＇81	E02	26	8.61	ナ゙して	PIO－（6m）पOJ
SIt	198	96も	9St	8\＆t	6LS	20t	もてを	2St	OZも	898	16t	958	عレE	61t	198	02E	6とャ	（6u）un！pry
ع $\angle S$	6102	6902	しヤL	9LZZ	1LEL	ع9S	2181	と¢81	とt9	6681	0661	LOS	tL91	とか9L	LSS	61く1	$6 \square \angle t$	
L61	L｀とZ	8.82	0.52	\％ 92	8＇てを	9．91	S．61	ヶ¢ ¢	L＇81	0.22	$5 \angle 2$	6．91	6.21	してて	8.21	ع．6L	でって	（6） 78 ± 701
L．8L	L＇0S	S＇2S	S＇$\varepsilon 2$	－89	819	L81	¢ $\dagger \boldsymbol{t}$	8．$\angle t$	ع61	6．8t	ε ¢ 2 S	1－91	S＇0b	9＇2b	8.21	－¢¢	096	（6）uliezord
OS	ueipew	ueew	QS	ue！pow	ueaw	OS	UE！paw	ueaw	OS	ue！pow	ueəw	OS	ue！pow	ueaw	OS	UE！pəw	ueaw	squelnn
S！ 5			sfog			\＄1！ 5			sKog			S！！ 0				sfog		
8L－91						Sf－¢！						21－01						

Table 8 PERCENT FREQUENCY DISTRIBUTION OF INDIVIDUALS ACCORDING TO FOOD INTAKE (AS \% OF RDI) BY AGE GROUPS \& SEX

Per cent of RDI		$\begin{gathered} 1-3 \\ \text { Years } \end{gathered}$	$\begin{array}{c\|} \hline 4-6 \\ \text { Years } \end{array}$	10-12 years		Adult Males		Adult Females		
		Boys		Girls	Sed.	Mod.	Sed.	Mod.		
Cereals	<30		4.3	1.3	1.9	1	0.8	0.8	0.9	0.8
	30-40	5.8	3.7	4.4	2.9	1.5	1.4	1.7	0.8	
	40-50	6	6	4.4	4.2	3	2.3	3.7	1.2	
	50-60	9.1	7	7.9	10.1	7.4	3.9	6.6	4.1	
	60-70	8.1	11.5	12.1	11.6	8	5.8	10.6	4.7	
	70-80	8.9	13.2	12.8	10.5	12.3	8.1	10.2	6.3	
	80-90	8.5	12.4	13.4	10.5	9	10.3	12	7.9	
	90-100	9	11.4	11.1	12.8	10.3	9.7	9.8	9.2	
	≥ 100	40.3	33.5	32	36.4	47.7	57.7	44.5	65	
Pulses	<30	53.9	39.7	36.2	37.4	32.7	40.5	37.3	39.8	
	30-40	8.4	6.1	7.9	7.3	3	3.9	5	3.3	
	40-50	6.2	7	7.1	9.4	3.5	4.2	4.8	4	
	50-60	5.9	7.5	7	6.7	3.5	5.9	4.5	4.6	
	60-70	4.1	6.1	10	7.6	5.8	4.4	6.6	4.7	
	70-80	4.9	5.5	4.6	4.4	6.2	5.1	5.5	5.8	
	80-90	3.4	4.9	4.8	6.3	5	3.4	3.6	4	
	90-100	2.6	4.1	3.8	3.8	4.6	5	3.7	3.7	
	≥ 100	10.6	19.1	18.6	17.1	35.7	27.6	29	30.1	
Green Leafy Veget.	<30	90.1	85	81.4	83.6	82.5	82.7	84.4	85.9	
	30-40	1	1	0.6	1	0.4	0.2	1.5	1.4	
	40-50	0.9	0.7	1.1	1	0.1	0.3	1.4	1.3	
	50-60	0.5	1.2	1.3	1	0.6	0.6	2.3	1.7	
	60-70	0.5	1.6	1.5	0.8	0.9	0.3	1.6	1.2	
	70-80	0.8	0.8	0.2	0.6	0.3	0.6	1.9	1.3	
	80-90	0.5	1.4	1.3	1	0.5	0.4	1.7	1.3	
	90-100	0.5	0.8	0.8	0.5	0.8	0.8	0.8	1	
	≥ 100	5.2	7.5	11.8	10.5	13.9	14.1	4.4	4.9	

Table 9 PERCENT FREQUENCY DISTRIBUTION OF INDIVIDUALS ACCORDING TO FOOD INTAKE (AS \% OF RDI) BY AGE GROUPS \& SEX

Per cent of RDI		$\begin{gathered} 1-3 \\ \text { Years } \end{gathered}$	$\begin{gathered} 4-6 \\ \text { Years } \end{gathered}$	10-12 Years		Adult Males		Adult Females		
		Boys		Girls	Sed.	Mod.	Sed.	Mod.		
Other vegetables	<30		64.7	55.8	54.8	51.9	41.2	54.2	43.4	59.5
	30-40	1	1.3	1.7	1.5	1.6	1.4	0.7	0.5	
	40-50	1.1	1.2	2.3	2.1	1.1	1.5	0.9	0.5	
	50-60	1.2	1.6	1.5	2.7	1.9	2.5	1	0.6	
	60-70	1.1	1.3	2.1	2.9	2.8	1.9	1.5	1	
	70-80	1.5	1.5	1	2.1	2.9	2.3	1.6	0.9	
	80-90	1.3	1.9	3.3	3.2	3.7	3.4	1.4	1.5	
	90-100	2.5	1.6	4	2.7	2.5	2.5	2	0.9	
	2100	25.6	33.8	29.3	30.9	42.3	30.3	47.5	34.6	
Milk\& Milk products	<30	74.5	75	70.3	76.3	41	70.3	43.6	66.7	
	30-40	5.5	5.2	6.3	5.3	6.1	6.6	4.6	7.2	
	40-50	3.7	4.2	5.4	3.4	7.4	4.2	5.4	4.8	
	50-60	3.4	3	3.3	3.4	5.3	2.2	2.9	2.6	
	60-70	3.3	2.7	3.6	2.3	7.2	2.4	5.3	2.8	
	70-80	1.8	2.5	1.7	2.5	3.3	1.9	3.1	1.2	
	80-90	2.3	1.1	3.6	1.9	4	1.8	2.6	1.7	
	90-100	0.9	1.6	1	1	2.9	1.6	4.6	0.9	
	2100	4.6	4.7	4.8	3.9	22.8	9	27.9	12.1	
Fats\& Oils	<30	57.8	64.6	75.5	36.8	53	65.7	31.5	40.2	
	30-40	12.8	11.8	9.8	14.9	14.8	12.7	12.5	15.6	
	40-50	8.8	7.7	4.6	12.8	9	6.8	10.7	11.3	
	50-60	5.5	5	3.6	8.2	6.1	4.7	9.3	8.3	
	60-70	3.7	3.4	1.1	5.4	4.7	3.2	7.3	6.2	
	70-80	2.4	2.2	1.5	5.2	3.4	1.6	4.8	4.1	
	80-90	2.1	1.2	1.1	3.5	2	0.7	3.8	2.7	
	90-100	1.7	1	0	3	1.7	1.3	3.8	2.1	
	2100	5.2	3.1	2.8	10.2	5.3	3.3	16.3	9.5	
Sugar \& Jaggery	<30	45.8	47.8	47.5	44.7	22.5	43.4	26	36.9	
	30-40	9.8	11.5	10	14.1	5.8	6	2	2.2	
	40-50	7.9	10.7	10	11.1	8.4	9.5	5.1	4.1	
	50-60	6.9	5.3	6.5	5	7.5	8.3	2.9	2.7	
	60-70	6.5	6.4	7.3	5.7	10.2	4.2	4	4.3	
	70-80	2.5	3.7	5.9	5.5	5.8	5.4	6.6	4.6	
	80-90	4.1	3.4	3.4	4.8	7.4	3.2	5.5	5.5	
	90-100	3.7	2.8	1.1	1	5.7	4.5	7.1	5.6	
	2100	12.8	8.4	8.3	8.1	26.7	15.5	40.8	34.1	

Consumption of other vegetable was also much less than the RDI in almost half of the population surveyed. Milk consumption was unsatisfactory in almost 70\% of the individuals, particularly in young children. Over 75\% of preschool children consumed less than 30% of RDI of milk. The pregnant and lactating women did not consume any additional quantities of milk over and above those of NPNL. Only 15\% of individuals had fat intakes comparable to RDI. About 50\% of preschool children had low intakes of sugar ($<30 \%$ of RDI). The consumption of flesh foods though was low in all the ages, in general, in the State of Kerala the intake of fish and meat was better than that in all the other States.

3.3.2 Nutrient Intakes

The distribution of individuals according to percent of RDI for different nutrients is presented in Tables-10 \& 11 and proportion of Households consuming various Nutrients below 70\% of RDA are shown in Figs. 3 to 5.

Only 12-24\% of individuals between 1-6 years and 13-15 years had adequate energy intakes. In the other ages 13 to 55% of individual were consuming more than or equal to RDI of energy. Protein adequacy was also observed in about a half of the individuals. Only a very small proportion (11\%) of the population was consuming adequate amount of vitamin A. The intakes were so poor that about $50-70 \%$ had intakes less than 30% of RDI. Iron consumption was inadequate in more than 90% of the individuals in almost all the ages. Calcium intake was also very low in most of the age groups, especially in the children of 1-3 years, pregnant and lactating women.

The mean intake of foods and nutrients for 1988-92 (moving average) are given in Tables 12 \& 13. The consumption of all the foods was less than RDI in all the age groups. The nutrient intakes were, in general less than RDI.

ヨห丬

Table 12 MEAN INTAKE OF FOODSTUFFS* (per day) FOR 1988-92.

Age Groups (Years)											
Food stuffs	1-3	4-6	7-9	$\begin{array}{\|l\|} \hline 10-12 \\ \text { Boys } \end{array}$	$\begin{gathered} 10-12 \\ \text { Girls } \end{gathered}$	$\begin{array}{\|c\|} \hline 13-15 \\ \text { Boys } \end{array}$	$\begin{gathered} 13-15 \\ \text { Girls } \end{gathered}$	$\begin{array}{\|c\|} \hline 16-18 \\ \text { Boys } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 16-18 \\ \text { Girls } \end{array}$	Adult Males	Adult Females
N	1915	2042	1664	634	693	497	488	442	484	5261	5644
Cereals\& Millets	170	258	319	383	365	445	406	509	425	531	445
Pulses	14	20	23	25	24	24	27	28	27	32	32
Leafy vegetables	3	6	7	6	7	8	8	7	9	9	8
Other vegetables	19	31	34	38	37	58	39	50	56	53	45
Roots \& tubers	12	19	29	37	32	38	34	52	50	51	40
Nuts \& oil seeds	5	6	8	11	21	10	14	16	27	17	17
Cond. \& spices	5	8	10	14	12	12	13	14	19	17	15
Fruits	16	22	26	25	50	37	26	96	21	23	30
Fish	4	5	7	9	9	11	10	19	12	16	17
Other flesh foods	2	3	3	3	4	2	2	5	4	6	4
Milk \& milk prod.	71	67	76	73	67	93	76	96	110	86	92
Fats \& Oils	5	7	8	11	8	13	24	14	12	16	14
Sugar \& Jaggery	15	17	18	20	21	20	22	20	24	23	23

* Moving Average for the years 1988-89, 1989-90 and 1900-92.

Table 13 MEAN DAILY INTAKE OF NUTRIENTS* BY AGE GROUPS AND SEX

Age Groups (Years)											
	1-3	4-6	7.9	$\begin{aligned} & 10-12 \\ & \text { Boys } \end{aligned}$	$\begin{gathered} \hline 10-12 \\ \text { Girls } \end{gathered}$	$\begin{array}{r} 13-15 \\ \text { Boys } \end{array}$	$\begin{aligned} & 13-15 \\ & \text { Girls } \end{aligned}$	$\begin{array}{\|c\|} \hline 16-18 \\ \text { Boys } \end{array}$	$\begin{array}{\|l\|} \hline 16-18 \\ \text { Girls } \\ \hline \end{array}$	Adult Males	Adult Females
N	1915	2042	1664	634	693	497	488	442	484	5261	5644
Protein (g)	23.2	33.4	40.2	47.5	47.0	56.4	49.2	63.9	56.7	64.5	57.0
Tot Fat (g)	13.4	17.4	20.8	26.4	27.9	31.3	40.9	34.7	37.6	36.4	32.9
Energy (Kcal)	876	1248	1516	1816	1793	2090	2024	2448	2140	2467	2151
Calcium (mg)	259	327	391	435	440	500	472	528	535	574	540
Iron (mg)	10	15	18	22	22	25	22	28	25	29	26
Vit A ($\mu \mathrm{g}$)	121	166	197	238	212	207	232	260	300	274	257
Thiamin (mg)	0.50	0.80	0.90	1.10	1.10	1.30	1.10	1.40	1.30	1.40	1.30
Ribo (mg)	0.40	0.50	0.60	0.70	0.70	0.90	0.70	0.90	0.90	0.90	0.80
Niacin (mg)	5	8	10	12	12	14	13	17	14	16	14
Vit C (mg)	14	24	29	30	36	41	31	46	41	38	35

4.TIME TRENDS

4.1 Food Consumption

The changes in mean intakes between 1975-79 and 1996-97 are presented in Tables 14 to16. There was an increase in the consumption of mean cereal intakes in all the age groups, except in 1-3 years of age. The increase ranged from about 12 g (7\%) in 4-6 year old children to about $104 \mathrm{~g}(25 \%)$ in pregnant women. The median intake of millets did not show any change (zero), indicating that about a half of them did not consume millets at all at both points of time. The changes in pulse consumption were negligible. Like the millets intakes, the median intakes of GLV at both time points was poor with at least 50% of them not consuming GLV at all at both points of time. There was an increasing trend in the consumption of the mean intakes of milk and milk products, though the magnitude of increase was small (<20 $\mathrm{g})$. It was interesting that the milk consumption showed an increasing trend in all age groups except 1-3 years and pregnant women, though these were much below the RDI.

Table-14
TIME TRENDS IN MEAN FOOD INTAKES (g/day)

Food Stuffs	Age Groups (Years)					
	$\mathbf{1 9}$		4 4-6		$7-9$	
	$(1975-79)$	$(1996-97)$	$(1975-79)$	$(1996-97)$	$(1975-79)$	$(1996-97)$
Millets	50	32	81	59	98	86
Cereals	120	124	152	185	186	225
Pulses	16	13	20	20	23	25
Leafy Vegetables	6	5	6	10	7	12
Other Vegetables	19	14	27	26	35	30
Roots \& Tubers	20	17	30	30	34	32
Nuts \& Oil seeds	4	3	4	6	5	8
Condi. \& Spices	6	6	8	9	8	10
Fruits	10	14	10	22	10	18
Fish	3	5	4	7	5	8
Other Flesh foods	3	2	2	2	1	2
Milk \& Milk prod.	72	67	56	60	52	53
Fats \& Oils	4	5	5	8	7	9
Sugar \& Jaggery	13	14	13	16	14	17

61	Sl	61	91	81	91	61	91	61	カL	61	71	Kan66e 8 de6ns
11	6	$\varepsilon 1$	01	OL	L	1.	6	6	L	11	L	5110 8 578］
12	εS	89	$\checkmark G$	99	$6 \downarrow$	S9	15	εG	St	99	$\angle \square$	posd＞1！w 8 प्रा！W
\square	\downarrow	S	1	ε	1	\checkmark	1	ε	1	ε	1	spoot 4self deylo
81	6	$\checkmark 乙$	6	$\downarrow 1$	8	81	6	21	9	S1	L	$45!1$
てZ	Gl	$\square 乙$	O1	91	6	SE	01	てZ	01	02	01	St！nd］
$\varepsilon 1$	01	91	11	11	01	$\varepsilon 1$	6	11	OL	て，	6	soo！ds 8 ！${ }^{\text {P }}$
81	6	02	9	1.	L	SL	8	$1 /$	G	い	9	speas 1108 sinn
LS	85	ε ¢	19	$\forall ¢$	OS	6∇	15	$1 \square$	Ot	6ε	$\varepsilon \square$	staqni 8 stooy
OG	SG	89	$8{ }^{8}$	\square	$0 \downarrow$	$\angle \square$	19	8ε	$\varepsilon \square$	9ε	\downarrow	$62 \wedge 12470$
－1	01	$\varepsilon 乙$	01	91	8	21	Z1	ヤ1	8	St	6	179
$\angle Z$	82	乙\＆	$\bigcirc \varepsilon$	92	SZ	82	92	SL	$\dagger 2$	92	$L Z$	sesjnd
GSE	9 SL	L6E	$\varepsilon \vdash \varepsilon$	LOE	عย乙	80ε	892	6ヶ2	LOZ	$\varepsilon \angle 乙$	022	spedas
88	82，	811	OSL	26	จ¢L	021	021	66	LてL	86	OZ1	s7al！！
（26－9661）	（6L－9 261 ）	（ $26-966 \mathrm{l}$ ）	（6L－GL6L）	（L6－9661）	（6L－GL6L）	（L6－966L）	（6L－GL6L）	（L6－966L）	（6L－9L6L）	（26－966	L－9261）	synłs pood
s｜d！		sKog		S11！		sK08		sp！ 9		sKog		
8t－9b				Sl－EL				21－01				
（s．jeal）sdnodo a6\％												

（Кер／6）SヨY甘
'Table 16 TIME TRENDS IN MEAN INTAKE OF FOODS BY
AGE GROUPS \& SEX

Food Stuffs (g/day)	Adult males		Adult Females (NPNL)		Pregnant Women		Lactating Mothers	
	1975-79	1996-97	1975-79	1996-97	1975-79	1996-97	1975-79	1996-97
Millets	171	120	128	89	129	103	161	136
Cereals	323	421	258	345	230	360	275	382
Pulses	37	35	31	29	34	29	30	34
GLV	13	17	11	16	12	17	15	11
Other vegetables	55	54	47	49	44	42	45	42
Roots \& Tubers	59	56	51	53	58	34	48	43
Nuts \& Oil seeds	8	17	8	17	2	11	6	9
Condi. \& Spices	13	17	12	14	9	15	13	18
Fruits	14	31	11	24	11	26	13	34
Fish	9	18	8	18	6	10	8	11
Other Flesh foods	10	5	2	4	1	8	1	4
Milk \& Milk prod.	66	74	56	72	75	70	58	67
Fats \& Oils	11	15	9	13	12	12	10	13
Sugar \& Jaggery	18	21	16	21	19	15	16	19

NPNL: Non Pregnant Non Lactating

TIME TRENDS

FOODS INTAKE :

- Increase in consumption of cereals was observed in all ages.
- Intakes among pregnant and lactating women were marginally increased over a period of time.
- A marginal increase was observed in consumption of qualitative foods such as GLV, Fruits, Milk and sugar \& Jaggery.

4.2 Nutrient Consumption

As already indicated, the coefficient of variation of nutrient intakes was high and ranged from about 40% in energy to about 70% in total fat. Hence, to assess the time trends, the median intakes obtained in 1996-97 among different groups were compared with those of 1975-79. Interestingly, the results are different from those reported earlier based on the mean intakes of one day weighment family diet survey, which had indicated no change in dietary consumption. In general, there was an increasing trend with respect to protein (1 g in $4-7$ years to 8.9 g in lactating women) and energy (36 Kcal in $1-3$ years to 446 Kcal in lactating women). Similar changes were noticed in fat (1.4 g in $1-3$ years to 7.4 g in NPNL) and vitamin A ($5 \mathrm{\mu g}$ in $1-3$ years to $64 \mu \mathrm{~g}$ in 16-18 years old girls). The results are presented in Tables 17 to 19 and Figs. 6 to 9 . Median test revealed that there is significant improvement in the intakes of vitamin A and fat in all age groups except 1-3 year children and pregnant women. Energy intake was improved in all age groups except 1-3 year children (Table 20).

әуеұи৷ Клұә!ด ৷епр!ィ!ри৷

Table 17 TIME TRENDS IN AVERAGE DAILY INTAKE OF NUTRIENTS (Median) BY AGE GROUPS AND SEX

Age groups (years)							
Nutrients (per day)	1-3		4-6		7-9		
	$(1975-79)$	$(1996-97)$	$(1975-79)$	$(1996-97)$	$(1975-79)$	$(1996-97)$	
Protein (g)	21.5	20.40	28.4	29.40	33.6	36.20	
Tot fat (g)	8.7	10.10	10.7	13.90	12.2	15.10	
Energy (Kcal)	779.3	815.40	1015.2	1154.20	1240.4	1417.7	
Calcium (mg)	192.7	167.60	223.7	224.00	240.7	261.50	
Iron (mg)	10	8	13	13	16	16	
Vitamin A (ug)	67	72	83	96	90	108	
Thiamin (mg)	0.40	0.40	0.60	0.60	0.80	0.70	
Ribo. (mg)	0.30	0.40	0.40	0.50	0.50	0.60	
Niacin (mg)	5	5	7	7	8	8	
Vitamin C (mg)	10	10	14	18	18	20	

NPNL: Non Pregnant Non Lactating

$\square \angle Z$	$\varepsilon .02$
1.09	$\angle S S$

Age Groups (years)												
Nutrients	10-12				13-15				16-18			
	Boys		Girls		Boys		Girls		Boys		Giris	
	$\begin{gathered} (1975 \\ 79 \end{gathered}$	(1996-97)	(1975-79)	(1996-97)	(1975-79)	(1996-97)	(1975-79)	(1996-97)	(1975-79)	(1996-97)	(1975-79)	(1996-97)
Protien (g)	39.5	43.1	39.1	40.45	43.3	48.85	41.25	44.4	54.8	58.1	44	50.1
Tot Fat (g)	14	19.3	13.9	17.85	16.7	21.95	15.9	19.5	17.1	26.4	16.7	23.7
Energy (Kcal)	1438.8	1719.1	1393.5	1613.95	1618.45	1899.1	1565.55	1811.8	1926.5	2275.8	1704.3	2018.8
Calcium (mg)	270.5	319.95	268.2	312.7	304.45	367.55	299.4	324.2	327.7	437.6	317.3	361.3
Iron (mg)	19	20	18	19	21	21	20	21	25	26	22	22
Vit A ($\mu \mathrm{g}$)	101	131	105	111	114	138	103	133	120	184	115	145
Thiamin (mg)	1.00	0.90	0.90	0.80	1.00	1.00	1.00	0.90	1.30	1.10	1.00	0.90
Ribo. (mg)	0.60	0.70	0.60	0.70	0.60	0.80	0.60	0.70	0.80	1.00	0.60	0.80
Niacin (mg)	10	10	9	9	10	12	10	11	14	14	11	12
Vit.C (mg)	22	24	20	24	24	27	22	28	24	37	26	32

TMETRENDS

NUTRIENTTNTAKE

TABLE 20 STATISTICAL COMPARISION OF INTAKE OF NUTRIENTS \# BETWEEN PERIODS (1975-79,1996-97) AMONG DIFFERENT AGE GROUPS/SEX

AGE	PROTEIN	TOTAL FAT	ENERGY	IRON	VIT A.
$1-3$	$* * \downarrow$	NS \uparrow	NS \downarrow	$* * \downarrow$	NS \downarrow
$4-6$	NS \uparrow	$* * \uparrow$	$* * \uparrow$	NS \downarrow	$* * \uparrow$
$7-9$	$* * \uparrow$	$* * \uparrow$	$* * \uparrow$	$P<0.06 \uparrow$	$* * \uparrow$
$10-12$ Boys	$* * \uparrow$	$* * \uparrow$	$* * \uparrow$	$P<0.06 \uparrow$	$* * \uparrow$
$10-12$ Girls	NS \uparrow	$* * \uparrow$	$* * \uparrow$	NS \uparrow	NS \uparrow
$13-15$ Boys	$* * \uparrow$	$* * \uparrow$	$* * \uparrow$	NS \uparrow	$* * \uparrow$
$13-15$ Girls	$* * \uparrow$	$* * \uparrow$	$* * \uparrow$	NS \uparrow	$* * \uparrow$
$16-18$ Boys	NS \uparrow	$* * \uparrow$	$* * \uparrow$	NS \uparrow	$* * \uparrow$
$16-18$ Girls	$* * \uparrow$	$* * \uparrow$	$* * \uparrow$	NS \downarrow	$* * \uparrow$
Adult Males	$* * \uparrow$	$* * \uparrow$	$* * \uparrow$	$* * \uparrow$	$* \uparrow \uparrow$
NPNL	$* * \uparrow$	$* * \uparrow$	$* * \uparrow$	$* * \uparrow$	$* \uparrow \uparrow$
Pregnant	NS \uparrow	$N S \uparrow$	$* * \uparrow$	NS \uparrow	NS \downarrow
Lactating	$* * \uparrow$	$* * \uparrow$	$* * \uparrow$	$* * \uparrow$	$* \uparrow \uparrow$

\# MEDIANS HAVE BEEN COMPARED USING NON-PARAMETRIC MEDIAN TEST NPNL: Non Pregnant Non Lactating
\uparrow : Increase $\quad \downarrow$: Decrease NS: Not Significant ** $\mathrm{p}<0.01$

5. COMMENTS

The report presents intakes of individuals of different ages and physiological status. The variation in food and nutrient intakes was very high, making comparison of mean intakes different. In general, the food and nutrient intakes were much below the RDI. Specifically, the intake of protective foods like pulses, GLV, flesh foods and milk \& milk products was unsatisfactory. In fact, the variation in the intakes was large, indicating that the percent of individuals consuming these foods was small. Similarly, the consumption of micronutrients were poor. For example, only about 10% of the individuals were consuming adequate amounts of vitamin A , iron or riboflavin. The results indicated that, by and large, the improvements in the median intakes are at variance with those reported earlier based on family diet survey. While improvement in individual intake is in tune with improvement in nutritional status, there is a need to examine the reasons for the differences between household diet survey and 24 hour recall diet survey.

REFERENCES

1. National Nutrition Monitoring Bureau, Report of Second Repeat Survey -Rural, Hyderabad: National Institute of Nutrition, 1997.
2. Expert Group of ICMR, Recommended Dietary Intakes for Indians, New Delhi: Indian Council of Medical Research, 1981.
3. Expert Group of ICMR, Nutnent Requirements and Recommended Dietary Allowances for Indians, New Delhi: Indian Council of Medical Research, 1990
